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ABSTRACT

Due to the unsupervised nature of wireless sensor networks
(WSNs), intensive communications are required among the
selected nodes to reach a consensus and synchronize prior to
entering a distributed beamforming (DBF) procedure. There-
fore, a sensible approach to select the nodes should not only
take into account the required beampattern, but also should
aim to preserve the inter-node connectivity and the network
energy. We show for a uniformly distributed WSN that when
the nodes are selected from a ring of proper radii, the resulting
beampattern mainlobe is narrower compared to that of the
classical DBF technique proposed in [1]. At the same time,
our proposed technique may preserve a substantial amount
of network energy and reduce the probability of network dis-
connectivity. Directivity of the proposed DBF technique is
analyzed and an extension of the technique to a multi-ring
case is presented. It is shown that the sidelobe peaks can be
considerably decreased if the nodes are selected from multiple
concentric rings.

Index Terms— Beampattern, Distributed beamform-
ing, Network energy consumption, Wireless sensor networks.

1. INTRODUCTION

One of the challenging problems in wireless sensor networks
(WSNs) is establishing a reliable and energy-efficient com-
munication link between small battery-powered sensor nodes
that have a limited transmission range and an access point
that is typically located far away from the network. To tackle
this problem, the distributed beamforming (DBF) technique
has recently been introduced [1]-[3] using which selected nodes
from a network cluster transmit their common message with
proper weights such that their transmitted signals are coher-
ently combined in the direction of the intended access point.
As a result, the nodes collective transmission range is sub-
stantially increased without requiring to amplify their total
transmission power.

In many DBF applications, the beampattern mainlobe
should be narrow enough to concentrate most of the transmit-
ted power towards the intended access point while inflicting
low interference on unintended receivers such as other clus-
ters’ access points. When the nodes are uniformly distributed
on a plane, the mainlobe width of the average beampattern is
approximately inverse proportional to the radius of the disk
from which the nodes are selected to participate in the DBF
[1]. This may cause a substantial problem if the desired main-
lobe width necessitates selecting the nodes from a disk larger
than the cluster area. Note also that the nodes participating

in the DBF are independent units and their common message
should first be distributed, or, generated as a consensus [4]
among all nodes.1 In addition, all the selected nodes should
be synchronized to be able to act as a virtual antenna array.
The above facts necessitate quite intensive inter-node com-
munication prior to the actual DBF. However, given the fix
number of participating nodes in the DBF, larger disk radius
equals larger average distances between the selected nodes.
This, in turn, results in an increased probability of discon-
nectivity among the selected nodes.

In this paper, we show that when the nodes are selected
from a ring of proper radii, the mainlobe of the average beam-
pattern narrows down, and, moreover, significant amount of
network energy may be preserved and the probability of net-
work disconnectivity can be considerably reduced. We ana-
lyze the average beampattern for such a node selection ap-
proach and derive sidelobe nulls and peaks and a lower bound
on the directivity of the proposed DBF. Selecting the nodes
from multiple concentric rings, we further show how the side-
lobe peaks levels can be substantially reduced.

The rest of the paper is organized as follows. Section 2
represents the proposed DBF technique and Section 3 ana-
lyzes its average beampattern properties. Section 4 extends
the proposed technique to the multi-ring scenario and Section
5 concludes the paper.

2. THE PROPOSED TECHNIQUE

Consider a large wireless sensor network whose nodes are uni-
formly distributed on a two-dimensional plane and an ac-
cess point located in the far field of the same plane. Let
S(O, Ri, Ro) denote the ring centered at a point O with the
inner radius Ri ≥ 0 and the outer radius Ro > Ri in a
network cluster. The ring has an area AS = π(R2

o − R2
i )

that is large enough to include N nodes. These nodes com-
municate with one another to reach a consensus [4]. Then
K ≤ N nodes are randomly selected, and, following a dis-
tributed synchronization procedure [2], [5], jointly transmit
their common narrow-band message with the primary aim to
maximize the received power at the direction of their access
point. Note that, N should be large enough such that the
consensus reached by the participating nodes is an accurate
approximation of the consensus of the whole network cluster,
and K ≤ N should be just large enough to keep the SNR at
the access point above a certain threshold. Further increasing

1The consensus can be any quantity of interest such as the av-
erage of the sensed (received) signals at nodes.
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K may contribute to nodes unnecessary power depletion.2

Without any loss of generality, we choose O as the pole
and the axis connecting O to the access point as the x-axis
of a polar coordinate system. Let (rk, ψk) and (P, φ0 = 0)
denote the polar coordinates of the node k and the access
point, respectively. Given the location vectors of the selected
nodes r = [r1, r2, . . . , rK ] and ψ = [ψ1, ψ2, . . . , ψK ], the cor-
responding array factor at a point (P, φ) can be written as

F (φ, r,ψ) =
1

K

K∑
k=1

ejξkej 2π

λ
dk(φ) (1)

where ξk is the initial phase of node k, λ is the carrier wave-

length, and dk(φ) =
(
P 2 + r2

k − 2Prk cos(φ− ψk)
)1/2

is the
Euclidian distance between the k-th node and (P, φ). The
received signal at the access point is maximized when ξk =
−2πdk(0)/λ [1], [3]. Moreover, as the access point is in the
far-field, we have that dk(φ) ≈ P − rk cos(φ − ψk). Using
the latter results in (1), it follows that the array factor is
approximately given by [1], [3]

F̃ (φ, r,ψ)=
1

K

K∑
k=1

ej 2π

λ
rk(cos(ψk)−cos(φ−ψk)) =

1

K

K∑
k=1

e−β(φ)zk

(2)

where β(φ) � 4π
λ

sin
(

φ
2

)
and zk � rk sin ψ̃k with ψ̃k � ψk− φ

2
.

Note that, as the selected nodes are uniformly distributed
on S(O, Ri, Ro), rk and ψ̃k are the realizations of random
variables R and Ψ, respectively, where

fR(rk)=

{
2rkA−1

S Ri≤rk≤ Ro

0 else
, fΨ(ψ̃k) =

1

2π
. −π≤ ψ̃<π

(3)
For the random variables R and Ψ as defined in (3), it can be

shown that the probability density function of Z � R sin Ψ is
given by [6]

fZ(z)=

{
2A−1

S (g(z,Ro)− g(z,Ri)) 0 ≤ |z| < Ri

2A−1
S g(z,Ro) Ri ≤ |z| ≤ Ro

(4)

where g(z, t) = t
√

1− (z/t)2. It follows from the above dis-

cussion that Equation (2) can be alternatively represented

as F̃ (φ, z) = 1
K

∑K
k=1 e−jβ(φ)zk where z � [z1, z2, . . . , zK ] is

a realization of a random vector Z = [Z1, Z2, . . . , ZK ] with
independent entries all of which are identically distributed
according to (4). The far-field beampattern associated with

the array factor F̃ (φ, z) is given by P (φ,z) = |F̃ (φ, z)|2. As
P (φ,z) depends on the realizations of Z, the study of the

behavior of Pav(φ) � EZ {P (φ,Z)} is of prominent impor-
tance. Note also that since the entries of Z are independently
distributed, it can be readily shown that for any arbitrary
realization z of Z, we have that limK→∞ P (φ,z) = Pav (see
also [1] for a similar observation). This further motivates the
analysis of Pav(φ).

3. AVERAGE BEAMPATTERN ANALYSIS

It is proven in [6] that if a random variable Z is distributed
as in (4), then

E
{
ejβ(φ)Z

}
=

2

R2
o −R2

i

(
Ro

β(φ)
J1(Roβ(φ))− Ri

β(φ)
J1(Riβ(φ))

)

(5)

2Protocols to choose the N and K nodes are discussed in [6].

where Jn(·) is the n-th order Bessel function of the first kind.
Using (5) along with the fact that the entries of Z are inde-
pendently distributed, it can be readily shown that [6]

Pav(φ) =
1

K
+

(
1− 1

K

) ∣∣∣E{
ejβ(φ)Z

}∣∣∣2 . (6)

Note that when Ri = 0, that is, when the ring S(O, Ri, Ro)
reduces to D(O, Ro), a disc centered at O with radius Ro,
it can be directly shown from (6) that Pav(φ) = 1/K +
(1− 1/K) |2J1(Roβ(φ))/Roβ(φ)|2. The same expression has
been obtained for Pav(φ) in [1] that exclusively investigates
the special case of Ri = 0. In what follows, we explore the
properties of Pav(φ) in (6) in more details and explain some
advantages of choosing Ri �= 0 with respect to the conven-
tional approach of [1] that proposes to select the nodes from
D(O, Ro).

3.1. The mainlobe of the beampattern: It is cru-
cial to form a beampattern with narrow mainlobe in many
practical scenarios. In our context, such a requirement may
be translated into having φ(n),1, the first null of E

{
ejβ(φ)Z

}
in

(5), or, equivalently, the first minimum point of Pav(φ) in (6),
close to φ0 = 0. It can be proven that, for a given Ro, φ(n),1

is a decreasing function of Ri. To show this, let α = Ri/Ro.

From (5) we have E
{
ejβ(φ)Z

}
= f(Roβ(φ), α) where

f(x, α) =
2

1− α2

(
J1(x)

x
− αJ1(αx)

x

)
. 0 ≤ α < 1 (7)

The following theorem holds [6].
Theorem 1: Let x∗(α) denote the smallest positive num-

ber such that f(x∗(α), α) = 0. We have x∗(0) = ν1 and
limα→1− x∗(α) = ν0, where ν1 ≈ 3.8317 and ν0 ≈ 2.4048 are
the first positive roots of J1(x) and J0(x), respectively. For
any α ∈ (0, 1), we have that ν0 < x∗(α) < ν1. Moreover,
x∗(α) is the only root of f(x, α) in the interval (ν0, ν1), and
dx∗(α)/dα < 0.

Theorem 1 shows that, if Ri = 0, then, Roβ(φ(n),1) =

ν1, or, equivalently, φ(n),1 = 2arcsin
(
(4πRo)

−1λν1

)
. Mean-

while, increasing Ri continuously decreases φ(n),1, such that

when Ri ≈ Ro, we have φ(n),1 ≈ 2 arcsin
(
(4πRo)

−1λν0

)
.

Note that, as Ro is usually large, Ri can be a very close
to Ro without causing the nodes on S(O, Ri, Ro) drop be-
low N . Moreover, for a large Ro/λ, we have that φ(n),1 ≈
(2πRo)

−1λν1 for Ri = 0 and φ(n),1 ≈ (2πRo)
−1λν0 for Ri ≈

Ro. This simply means that, for a given Ro, the first mini-
mum point of the average beampattern can be reduced up to
37% by increasing Ri from zero to Ro. Similarly, for a given
target φ(n),1, the outer radius of the ring S can be decreased

from Ro ≈ (2πφ(n),1)
−1λν1 to Ro ≈ (2πφ(n),1)

−1λν0, just

by increasing Ri from zero to Ri ≈ Ro ≈ (2πφ(n),1)
−1λν0.

This property can be very useful when the cluster nodes
are confined to an area that is smaller than a disk of radius
(2πφ(n),1)

−1λν1.
3.2. The network energy: In the DBF scheme pre-

sented above, the nodes on D(O, Ri) as well as the unselected
nodes from S(O, Ri, Ro) are used neither in generating the
consensus nor in the DBF, and, therefore, may be left in the
sleeping mode. Note that, a node using a typical transceiver
with the transmission range of several tens of meters has a
power consumption in the range of 10-20 mW in the trans-
mission/listening mode while its power consumption in the
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sleeping mode is in the range of 10 μW [7]. It should also
be mentioned that, the number of inter-node transmissions
required to reach a certain vicinity of the consensus at least
linearly increases with the number of nodes participating in
the consensus reaching process [4]. Therefore, even if one ex-
tra node, say, from D(O, Ri), decides to participate in this
process, the total number of required inter-node transmis-
sions may considerably increase. Therefore, the technique
proposed here tends to save a substantial amount of energy
as compared to the techniques that use all available nodes on
D(O, Ro).

Instead of selecting the nodes from S(O, Ri, Ro), it is
also possible to randomly choose them from D(O, Ro) and
make the selected nodes reach a consensus, while leaving all
other nodes in the sleeping mode. After the N selected nodes
reached a consensus, K nodes are randomly selected from
them and perform the DBF. Although such an approach in-
creases φ(n),1 to its maximum value of 2 arcsin

(
(4πRo)

−1λν1

)
,

one may argue that, as long as the energy preserving is con-
cerned, it is immaterial whether the N active nodes are se-
lected from D(O, Ro) or from S(O, Ri, Ro). As will be shown
below, this may not be a correct argument. The nodes have
to intensively communicate with one another to reach a con-
sensus and synchronize prior to performing DBF. These inter-
node communications may be hampered if the N active nodes
are scattered throughout the larger area of D(O, Ro).

3.3. The network connectivity: The following theo-
rem from [6] is fundamental for our argument on the network
connectivity.

Theorem 2: Consider a randomly selected point F on the
ring S(O, Ri, Ro) with a fix area of AS = πR2

o − πR2
i . Then,

as Ro grows, the probability that another randomly selected
point on S(O, Ri, Ro) is in the Rf -neighborhood of F is given
by PS = (π+1)Rf/2πRo. Now, consider a randomly selected
point F on the disk D(O, Ro). Then, as Ro grows, the prob-
ability that another randomly selected point on D(O, Ro) is
in the Rf -neighborhood of F is given by PD = R2

f/R2
o.

Theorem 2 shows that, if the nodes transmission range is
Rf , then, for a large Ro, the probability that two arbitrary
active nodes are within the transmission range of each other is
inverse proportional to Ro when the nodes are selected from
S(O, Ri, Ro) and inverse proportional to R2

o when they are
selected from D(O, Ro). Therefore, when both S(O, Ri, Ro)
and D(O, Ro) have the same number of active nodes, the
probability that some nodes in D(O, Ro) lose contact with
other active nodes is much higher. In such a case, the only
approach to maintain the inter-node communications is to
activate some of the sleeping nodes and use them as interme-
diate relays. This multi-hop scheme, in turns, may result in
delay, degrading the synchronization accuracy, and the waste
of transmission power.

3.4. Approximate average beampattern: It is usu-
ally desired to have a narrow mainlobe, or, equivalently, have
φ(n),1 close to zero. According to the discussion in Subsec-
tion 3.1., φ(n),1 can be considered inverse proportional to Ro.
Therefore, a small φ(n),1 requires a large Ro. At the same
time, due to our discussions about the network energy preser-
vation and the network connectivity in Subsections 3.2. and
3.3., it may be preferable to keep AS = πR2

o−πR2
i just large

enough to make sure that S(O, Ri, Ro) includes N nodes. It
is direct to observe that increasing Ro while keeping AS fixed,
results in an Ri that is very close to Ro, or, equivalently, a
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Fig. 1. Pav(φ) versus φ for Ro/λ = 10 and different α.

large but narrow ring S(O, Ri, Ro). It can be shown [6] for
such a scenario that Pav(φ) in (6) simplifies to

Pav(φ) ≈ 1

K
+

(
1− 1

K

)
|J0(Roβ(φ))|2 . (8)

When Roβ(φ)� 1/4, Pav(φ) can be further simplified to

Pav(φ) ≈ 1

K
+

(
1− 1

K

)
2

πRoβ(φ)
cos2

(
Roβ(φ)− π

4

)
. (9)

Let φ(n),l and φ(p),l denote the l-th null and the l-th peak
points of the average beampattern Pav(φ), respectively (note
that φ(p),0 = φ0 = 0). From (9), it directly follows that

φ(n),l≈2 arcsin

(
λ(l−1/4)

4Ro

)
, φ(p),l≈2 arcsin

(
λ(l+1/4)

4Ro

)

(10)
for l = 1, 2, . . .. It follows from (9) and (10) that the l-th
local maxima of the average sidelobe is approximately given
by

Pav(φ(p),l) ≈ 1

K
+

(
1− 1

K

)
2

π2(l+1/4)
. (11)

Note that, Pav(φ(p),l) is inverse proportional to l for large
K. It should also be mentioned that the approximation ob-
tained from (10) for φ(n),1 is in fact very close to φ(n),1 =

2arcsin
(
(4πRo)

−1λν0

)
derived in Subsection 3.1.

Note that, Equations in (10) provide a very simple tech-
nique to determine Ro and Ri: Given a desired φ(n),l or φ(p),l,
one may determine the required Ro from (10), and, then, use
the preassigned AS = πR2

o − πR2
i to derive Ri.

Fig. 1 shows Pav(φ) versus φ for K = 20, Ro/λ = 10, and
four different values of α. As expected, increasing α narrows
down the mainlobe. Note also that, the area that includes
the active nodes when α = 0 is over 100 times more than
the area that includes the active nodes when α = 0.95. This
facilitates leaving most of the nodes in the sleeping mode in
the latter case and save substantial amount of energy. Note
also that the larger values of α result in increased sidelobe
peak levels. In Section 4, a simple technique is introduced to
alleviate this problem.

3.5. Average directivity: Average directivity
Dav � E{∫ π

−π
P (0, z)dφ/

∫ π

−π
P (φ,z)dφ} is a parameter that
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measures the efficiency of the beamforming technique to di-
rect the transmitted power towards the desired direction. The
so-defined Dav cannot be calculated in a closed form for the
proposed algorithm. However, it is known that [1] Dav always

lower-bounded by D̃av = 2π/
∫ π

−π
Pav(φ)dφ . For the case

that (8) holds, it is shown in [6] that

D̃av/K = (1+(K−1) 2F3(
1
2
, 1

2
; 1, 1, 1,−(4πRo/λ)2))−1 where

2F3(
1
2
, 1

2
; 1, 1, 1,−(4πRo/λ)2) is a generalized hypergeometric

function. Moreover, it holds for large Ro/λ that [6]

Dav/K ≥
(
1 + μ(K − 1) ln(Ro/λ)

(Ro/λ)

)
−1

with μ ≈ 0.0322. It can

be observed from the latter inequality that, as Ro increases,
Dav reaches its maximum possible value of K.

4. MULTI-RING EXTENSION OF THE

ALGORITHM

It follows from (11) that, when Ri ≈ Ro, the first and the
largest sidelobe peak of the average beampattern is given by
Pav(φ(p),l) ≈ 0.16 + 0.84/K which is more than 16% of the
mainlobe maxima. In applications that such a level of side-
lobe peak is not acceptable, the nodes may be selected from
multiple concentric rings of proper radii to decrease the side-
lobe peak level. To substantiate this claim, let us assume that
the K nodes used in the DBF are randomly selected from M
concentric rings of Sm(O, Rm,i, Rm,o), m = 1, . . . , M where
Rm,o ≤ Rm+1,i. It can be shown that Pav(φ) is given by (6)
where

E
{
ejβ(φ)Z

}
=

2
∑M

m=1 Rm,oJ1 (Rm,oβ(φ))−Rm,iJ1 (Rm,iβ(φ))

β(φ)
∑M

m=1 R2
m,o −R2

m,i

.

(12)
Assume that ASm

= γ/M for m = 1, . . . , M , that is, all
the concentric rings have the same area and their total area
is equal to γ. Note that γ is independent from Rm,o and if
Rm,o grows, Rm,i increases as well such that γ/M = π(R2

m,o−
R2

m,i) remains unchanged. Under the above condition, Pav(φ)
simplifies for large R1,o to [6]

Pav(φ)≈ 1

K
+

(
1− 1

K

)∣∣∣∣∣
√

2

M

M∑
m=1

cos
(
Rm,oβ(φ)− π

4

)
√

πRm,oβ(φ)

∣∣∣∣∣
2

. (13)

It can be observed from the above approximation that the
contributions of all rings to Pav(φ) are simply summed up
inside the absolute value at the right-hand side (RHS) of
(13). This fact facilitates a simple technique to determine
Rm,o, m = 1, . . . , M as follows. Assume that it is required
to have a null at φ∗. Selecting

Rm,o =
λ(m− 1/4)

4 sin(φ∗/2)
, m = 1, . . . , M (14)

all the cosine functions at the RHS of (13) are equal to zero at
φ = φ∗, while each of these functions has its first maxima at
a different point. This results in generating an average beam-
pattern null at φ∗ while substantially reducing the sidelobe
peaks.

Fig. 2 shows Pav(φ) versus φ for λ = 3 m, K = 20, γ =
25π m2, φ∗ = π/180, and for the cases of M = 1, M = 2, and
M = 3. Rm,o is obtained from (14), while Rm,i is calculated
from γ/M = π(R2

m,o − R2
m,i). As can be observed from the

figure, even two concentric rings considerably decrease the
sidelobe peaks, and, at the same time, flatten the average
beampattern around the null point φ∗ = π/180.
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Fig. 2. Pav(φ) versus φ for M = 1, M = 2, and M = 3.

5. CONCLUSIONS

In this paper, a simple beamforming technique has been pro-
posed for uniformly distributed wireless sensor networks. It
has been shown that if the participating nodes in the beam-
forming are randomly selected from a narrow ring, an aver-
age beampattern with a narrow mainlobe can be generated,
and, at the same time, a substantial amount of network en-
ergy may be preserved, and, further, the probability that the
active nodes fall outside of the transmission range of one an-
other is reduced. Then, an extension of the proposed tech-
nique has been presented and it has been shown that the
sidelobe peaks can be considerably decreased if the nodes are
selected from a few concentric rings.
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