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ABSTRACT

We investigate a general framework for noise reduction which con-
sists in controlling the level of signal distortion while reducing the
level of noise. A parameterized non-causal filter that allows for tun-
ing the signal distortion and noise reduction inversely is obtained
and is referred to as parameterized multichannel non-causal Wiener
filter (PMWF) herein. The same optimization problem leads to the
minimum variance distortionless response (MVDR) as a particular
case of the PMWF. In contrast to earlier works, the proposed expres-
sions of the PMWF and MVDR are simplified and require the knowl-
edge of the speech and noise statistics only. To rigorously quantify
the gains and losses when using these filters, we establish simpli-
fied closed-form expressions for three measures, namely, the signal
distortion index, the noise reduction factor, and the output signal-to-
noise ratio (SNR), and highlight the tradeoff between noise reduction
and speech distortion in the multichannel case.

Index Terms— Multichannel noise reduction, Wiener filter, min-
imum variance distortionless response, speech distortion.

1. INTRODUCTION

Speech signals perceived by communication devices are generally
corrupted by background noise or interference from other competing
sources. To cope with this issue, several noise reduction approaches
have been developed so far including [1]-[12]. In contrast to the
single-channel based techniques, microphone-array based process-
ing is promising since it takes advantage of the spatial aperture in
addition to the classical frequency and time dimensions.

When compared to their time-domain counterparts, frequency-
domain approaches for noise reduction are generally preferred be-
cause each frequency bin can be processed apart from the others.
This allows for easier calculations and interesting relationships can
be found. The well known multichannel Wiener filter is optimal
in the mean-square error sense. However, it can introduce unde-
sirable distortions to the speech [1]. Parameterized multichannel
filtering allows for tuning the signal distortion and noise reduc-
tion [1, 2, 3] while forcing a distortionless response when reducing
the noise power leads to the MVDR filter [2, 4, 5]. In [6, 7], the
parametrization of the adaptive noise canceler in the standard Grif-
fith and Jim generalized sidelobe canceler [8] has been shown to
reduce the speech distortions by controlling the signal leakage due
to the system model errors (microphones mismatch, spatial aliasing,
reverberation, etc). In [9], a general cost function combining system
model prior and estimated model terms was considered. However,
system-model-based prior is known to deteriorate the performance
of the filters in the presence of system model errors.

In this paper, we focus on a general framework that does not re-
quire any preprocessing and consists in minimizing the power of the
noise captured by the microphones and filtered by the filter of inter-
est while controlling the desired signals distortion which is defined

as the dissimilarity between one noise-free reference microphone
signal and the overall filtered noise-free microphone signals. This
approach, albeit essentially equivalent to the traditional way of re-
ducing the signal distortion subject to some constraint on the output
noise, is more intuitive in the sense that it allows to see the connec-
tion with the MVDR. By doing so, we develop a new simplified ex-
pression for the PMWF that depends on the noise and speech statis-
tics only. The second contribution of this work consists in analyti-
cally investigating the tradeoff between noise reduction and speech
distortion in the multichannel case and studying the effect of some
key parameters, namely, the input SNR and number of microphones
on the performance of these filters.

1.1. Data Model

We consider the following frequency-domain representation of the
data model [2]:

Yn(jω) = Gn(jω)S(jω) + Vn(jω) = Xn(jω) + Vn(jω), (1)

where Yn(jω), Gn(jω), S(jω), and Vn(jω) are the discrete-time
Fourier transforms (DTFT’s) of the nth microphone output, the
channel impulse response between the source and the nth micro-
phone, the desired speech signal, and the additive noise, respectively.

Our aim is to reduce the noise and recover one of the sig-
nal components, say Xn0(jω), n0 ∈ {1, ..., N}, the best way
we can (along some criteria to be defined later) by applying a
linear filter hn0(jω) to the overall observation vector y(jω) =
[Y1(jω) Y2(jω) · · · YN (jω)]T . The output of this filter is:

Z(jω) = hH
n0(jω)y(jω) = hH

n0(jω)x(jω)
� �� �

Dn0 (jω)

+hH
n0(jω)v(jω)

� �� �
νn0 (jω)

, (2)

where x(jω) and v(jω) are defined like y(jω). Dn0(jω)
and νn0(jω) are the speech and noise components at the out-
put of hn0(jω), respectively. We also define g(jω) =

[G1(jω) G2(jω) · · · GN (jω)]T .

1.2. Definitions

We use the definitions given in [2]. For completeness, we specify
some of them here. First, we define the power spectrum density
(PSD) matrix of a vector a(jω) as Φaa(jω) = E

�
a(jω)aH(jω)

�
.

Since we are taking the n0th noise-free microphone signal as a ref-

erence, we define the local input SNR as SNR(ω) =
φxn0xn0

(ω)

φvn0vn0
(ω)

,

where φaa(ω) = E
�|A(jω)|2� is the PSD of a(t) [having A(jω)

as DTFT]. Recall that our aim is to have an optimal estimate of
Xn0(jω) at the output of the linear filter hn0(jω). Hence, we
define the error signals Ex,n0(jω) = Xn0(jω) − Dn0(jω) and
Ev,n0(jω) = νn0(jω). We obtain:

Ex,n0(jω) = [un0 − hn0(jω)]H x(jω), (3)

Ev,n0(jω) = hH
n0(jω)v(jω), (4)
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where un0 is an N -dimensional vector with entries being all zeroes
except the n0th one which equals 1. We use the definitions of the lo-
cal signal distortion index, υsd [hn0(jω)], and local noise reduction
factor, ξnr [hn0(jω)], initially proposed in [2] which are directly de-
rived from (3) and (4) as:

υsd [hn0(jω)] =
[un0 − hn0(jω)]H Φxx(jω) [un0 − hn0(jω)]

φxn0xn0
(ω)

,

(5)

ξnr [hn0(jω)] =
φvn0vn0

(ω)

hH
n0(jω)Φvv(jω)hn0(jω)

. (6)

Finally, we define the local output SNR as [2]:

SNRo [hn0(jω)] =
hH

n0(jω)Φxx(jω)hn0(jω)

hH
n0(jω)Φvv(jω)hn0(jω)

. (7)

Similar definitions were first proposed in [10] to study the trade-
off between signal distortion and noise reduction with the time-
domain single channel Wiener filter. Herein, we use the above def-
initions to study this tradeoff achieved by the PMWF. As a rule of
thumb, noise reduction comes at the price of speech distortion. This
fact is well known in the single-channel case where any noise reduc-
tion leads to speech distortion [2, 10, 11]. In the multichannel case,
however, noise reduction can be achieved with no speech distortion
in theory [2, 5]. The effect of preserving the speech signal on the
noise reduction is quantified herein. In what follows, we start by pre-
senting the general framework for noise reduction under low speech
distortion constraint and develop new expressions for the PMWF
and MVDR. Then, we study the tradeoff between noise reduction
and speech distortion in the multichannel case. Note that we assume
that the noise is stationary enough [12] so that the noise PSD matrix
Φvv(jω) can be estimated during the periods of silence of the target
speech. Then, we can also obtain Φxx(jω) = Φyy(jω)−Φvv(jω).

2. GENERAL FRAMEWORK FOR NOISE REDUCTION

2.1. Parameterized Multichannel Wiener Filter

In contrast to the classical multichannel non-causal Wiener filter, the
PMWF is able to achieve a tradeoff between noise reduction and
signal distortion. Traditionally, parameterized filters allowing the
tuning of the levels of residual noise and signal distortion are derived
by minimizing the signal distortion under the constraint of an upper
bound on the residual noise power [1, 2, 12]. Herein, we derive our
parameterized filter by minimizing the output noise energy under
some constraint on the level of the output signal distortion. Although
both approaches are equivalent, this formulation will better show us
the link with the MVDR that we will investigate next. Specifically,
we consider this optimization problem:

min
hn0 (jω)

E
�|Ev,n0(jω)|2� , sub. to E

�|Ex,n0(jω)|2� ≤ σ2(ω),

(8)
where σ2(ω) represents the maximum allowable local signal distor-
tion. Setting the derivative of the Lagrangian associated with (8)
with respect to hH

n0(jω) to zero, we obtain the PMWF:

hWβ,n0(jω)=[Φxx(jω) + βΦvv(jω)]−1 Φxx(jω)un0 , (9)

where β = 1
γ

is a positive-valued factor that allows for tuning the

signal distortion and noise reduction at the output of hWβ,n0(jω)
and γ is the Lagrange multiplier associated with (8). The relation-
ship between β and σ(ω) will be discussed in Section 3. Note also
that (9) can be found in earlier works such as [2]. The time-domain
equivalent of this expression can be found in [6, 12]. Unfortunately,

this expression does not offer enough flexibility to investigate the
tradeoff between noise reduction and signal distortion in the multi-
channel case and to establish the link with other optimal filters such
as the MVDR. Herein, we propose a more simplified form.

Result 1: For β �= 0, the PMWF can be written as :

hWβ,n0(jω) =
Φ−1

vv (jω)Φxx(jω)

β + λ(ω)
un0 , (10)

where λ(ω) = tr
�
Φ−1

vv (jω)Φxx(jω)
�

.
Proof : see Appendix I.
This parameterized filter is denoted as PMWF-β in the sequel.

Its expression is notable since it will allow us to show that the MVDR
is a particular case of (10). In addition, new simplified expressions
of the performance measures will be derived next using (10). These
measures will give us good insights into the behavior of the PMWF-
β in terms of signal distortion and noise reduction. The classical
Multichannel Wiener is obtained when β = 1 (PMWF-1). Next,
we show that the case β = 0 corresponds to the MVDR. This gen-
eralization is not straightforward and an explicit formulation of the
problem is required to establish its link with (8) and (10).

2.2. Minimum Variance Distortionless Response

The MVDR consists in reducing the noise under the constraint of no
distortion of Xn0(jω). This can be formulated as [2, 4]:

min
hn0 (jω)

E
�|Ev,n0(jω)|2� , sub. to E

�|Ex,n0(jω)|2� = 0. (11)

Clearly, this optimization problem is a particular case of (8) with
σ(ω) = 0. Rewriting the constraint in (11) as a function of hn0(jω)
and g(jω) only and setting the derivative of the Lagrangian associ-
ated with (11) with respect to hH

n0(jω) to zero lead to [2, 4]:

hMVDR,n0(jω) = G∗
n0(jω)

Φ−1
vv (jω)g(jω)

gH(jω)Φ−1
vv (jω)g(jω)

. (12)

Multiplying and dividing the second term in (12) by
φss(ω) and knowing that gH(jω)Φ−1

vv (jω)g(jω) =
tr
�
Φ−1

vv (jω)g(jω)gH(jω)
�
, we get rid of the explicit depen-

dence of (12) on the channel transfer functions and obtain [2]:

hMVDR,n0(jω) =
Φ−1

vv (jω)Φxx(jω)

λ(ω)
un0 . (13)

Since we are literally solving a particular case of the general problem
defined in (8), we see from (10) and (13) that the MVDR is nothing
but the PMWF with β = 0 (i.e., PMWF-0). More importantly, note
that in (10) and (13), there is no need to know neither the channel
transfer functions nor their ratios in contrast to [4, 9]. Indeed, these
new expressions are explicitly dependent on the speech and noise
statistics only.

3. PERFORMANCE ANALYSIS

Our analysis is based on the performance measures defined in Sub-
section 1.2. For completeness, we investigate the general case of the
PMWF-β. Plugging (10) into (5), (6), and (7), we obtain:

Result 2:

υsd [hWβ,n0(jω)] =
β2

[β + λ(ω)]2
, (14)

ξnr [hWβ,n0(jω)] =
[β + λ(ω)]2

SNR(ω)λ(ω)
, (15)

SNRo [hWβ,n0(jω)] = λ(ω). (16)
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Proof : see Appendix II .

Clearly, υsd [hWβ,n0(jω)] and ξnr [hWβ,n0(jω)] are increas-
ing with respect to β. In Fig. 1 (a), we plot the theoretical variations
of these performance measures with respect to β in the case of a
white noise. We notice that the tradeoff between noise reduction
and signal distortion has to be made in the multichannel case too.
However, noise reduction can be achieved [i.e., ξnr [hWβ,n0(jω)]
can be higher than 1] even when there is no signal distortion [i.e.,
υsd [hWβ,n0(jω)] = 0] which is not possible in the single-channel
case [2, 10]. This is observed with the MVDR filter which pre-
serves the speech and reduces the noise. Thanks to the new sim-
plified expression (14) and our new formulation (8), one can also
find the relationship between σ(ω) defined in (8) and β. By con-
sidering (5), the constraint in (8) is equivalent to υsd(ω) ≤ σ̃2(ω)

with σ̃2(ω) = σ2(ω)
φxn0xn0

(ω)
. Using (14) and this result, we obtain the

relationship:

β ≤ λ(ω)
σ̃(ω)

1 − σ̃(ω)
. (17)

For a given σ̃(ω) < 1, one can choose β and vice versa. Now, to
better understand the gains in terms of signal distortion and noise
reduction when using multiple microphones, we investigate in the
sequel the particular case of spatially incoherent1 noise components
(identically distributed).

Particular Case-Spatially Incoherent Noise: in this case, it can
be easily shown that:

λ(ω) = SNR(ω) [1 + Rn0(ω)] , (18)

where Rn0(ω) =
�N

n=1,n�=n0

|Gn(jω)|2
|Gn0 (jω)|2 .

Plugging (18) into (14)-(16), we draw out four important con-
clusions: (i) For an invariant environment, increasing the number
of microphones amounts to adding more diversity (other propaga-
tion paths), increasing, thereby, Rn0(ω). Hence, when the number
of microphones increases, the performance of the PMWF-β is en-
hanced (decreasing signal distortion and increasing noise reduction
and output SNR). A similar improvement is observed when the input
SNR is increased. (ii) As the input SNR or the number of micro-
phones increases, the PMWF-β (β �= 0) tends to have closer perfor-
mance to the MVDR in terms of noise reduction and signal distor-
tion. For example, at a given frequency ω, the Wiener and MVDR
filters are related up to a scalar coefficient: hMVDR,n0(jω) =
1+λ(ω)

λ(ω)
hW1,n0(jω). Fig. 1 (b) depicts the theoretical variations of

the scalar coefficient relating both filters at a given frequency with
respect to the input SNR and the number of microphones. Clearly,
both filters seem to have similar effects on the input signals when
the number of microphones and/or the SNR is sufficiently high. The
major differences between both filters can be noticed at low SNR

and small N . (iii) Since SNR(ω) = φss(ω)
φvv(ω)

|Gn0(jω)|2, choosing

the signal microphone experiencing the highest input SNR leads to
the best performances. (iv) The same performance measures corre-
sponding to the non-causal single-channel Wiener filter have been
derived in [2]. Those results correspond to the particular case above
N = 1. Thus, the multichannel case theoretically provides better
performances than the single-channel processing.

Finally, it is important to mention that in [3], we provided an an-
alytical proof of the SNR improvement at the output of the PMWF-β
confirming, thereby, its theoretical effectiveness in speech enhance-
ment regardless of the choice of β (even for the MVDR).

1The case of spatially coherent noise was omitted herein due to lack of
space. See [3] for more details.

4. NUMERICAL EXAMPLES

To show the tradeoff between signal distortion and noise reduction in
the multichannel case, we investigate the performance of the filters
PMWF-1 (i.e., Wiener), PMWF-10 (β = 10), and PMWF-0 (i.e.,
the MVDR). Without loss of generality, we will take the first micro-
phone n0 = 1 as a reference. The results are presented in terms of
the signal distortion index and the output SNR (other performance
measures were also tested and similar conclusions were reached).
In the investigated scenarios, the speaker is located in a reverberant
room in addition to a uniform linear array of N (varied between 2
and 10) microphones. The microphones spacing is Δ = 0.2 m. The
source is a 2-minutes long female speech sampled at 8 kHz and lo-
cated at 1.3 m away from the first microphone (taken as a reference
herein). The image method [13] was used to generate the impulse
responses (with a reverberation time T60 ≈ 270 ms) which are con-
volved with the speech signal before adding a computer generated
white Gaussian noise with a long-term input SNR = 0 dB. The sig-
nals are cut into 75% overlapping frames of duration 256 ms each.
We are interested in assessing the performance of the filters devel-
oped above and the different tradeoffs. Hence, we put aside the prob-
lem of noise statistics estimation and suppose that the noise samples
are known for any processed data frame as in [1]. For further details
on noise estimation, we refer the readers to [11]. All statistics are
estimated in a batch mode using the Welch’s modified periodogram.
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Fig. 1. Theoretical analysis: (a) output signal distortion index and
noise reduction factor vs. β; N = 2 and input SNR = 0 dB; (b)
scalar coefficient relating the Wiener and MVDR filters vs. input
SNR and N ; anechoic environment and white noise.
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Fig. 2 presents the variations of the signal distortion measures
with respect to the number of microphones (from 2 to 10). Note that
we also included the performance of the single-channel non-causal
Wiener filter (PMWF-1 with N = 1). We first see that using PMWF-
1 with multiple microphones is more beneficial in terms of signal
distortion than the single-channel case. In addition, the highest sig-
nal distortions are observed with the PMWF-10 and PMWF-1 while
lower signal distortions are seen with the MVDR. This confirms the
effect of the choice of the tuning parameter β that we expected in
Section 3. Increasing the number of microphones reduces the sig-
nal distortion for both filters PMWF-1 and PMWF-10. The signal
distortion achieved by the MVDR unexpectedly increases with the
number of microphones. To explain this fact, recall that in theory
the MVDR leads to zero signal distortion regardless of the number
of microphones. This is not the case in practice because of the nu-
merical inaccuracies in estimating the PSD matrices. Increasing the
number of microphones leads to more estimation errors since the
required PSD matrices become of larger sizes and more auto- and
cross-PSD terms are estimated, thereby, increasing the overall esti-
mation errors and increasing the signal distortion. In all cases, we
observe that the resulting signal distortion measure complies with
the theoretical effect of the tuning parameter β and the number of
microphones N . In Fig. 3, we see that increasing the number of
microphones leads, as expected, to more output SNR gains. Again,
the effect of the choice of the parameter β complies with the theo-
retical findings of Section 3. Indeed, the highest output SNR values
are achieved by the PMWF-10 while the lowest are achieved by the
MVDR. This proves the tradeoff of signal distortion vs. noise reduc-
tion in the multichannel case. The MVDR filter is desired because
of its low speech distortion. However, this comes at the price of low
output SNR especially when few microphones are used. Note also

that when the number of microphones increases, the PMWF-1 and
the MVDR tend to have comparable effects in terms of output SNR
and speech distortion, confirming, again, our theoretical results.

5. CONCLUSIONS

In this paper, a general framework for the design of non-causal noise
reduction filters for microphone arrays is investigated leading to the
PMWF. The Wiener filter and MVDR filters are essentially derived
from the same optimization problem and are particular cases of the
PMWF whose expression is shown to depend on the signal and noise
statistics only. We investigated the theoretical performance of the
PMWF and found interesting relationships between the input SNR,
noise reduction, signal distortion, and the output SNR. Indeed, we
highlighted the tradeoff between signal distortion and noise reduc-
tion in the multichannel case.

APPENDIX I: PROOF OF RESULT 1

The matrix Φxx(jω) = φss(ω)g(jω)gH(jω) is of rank one and
so is Φ−1

vv (jω)Φxx(jω) whose unique positive eigenvalue, λ(ω), is
given by:

λ(ω) = tr
�
Φ−1

vv (jω)Φxx(jω)
�

. (19)

For β �= 0, we have the Woodbury’s identity:

[Φxx(jω) + βΦvv(jω)]−1 =
1

β
[Φ−1

vv (jω) (20)

−Φ−1
vv (jω)Φxx(jω)Φ−1

vv (jω)

β + λ(ω)
].

Plugging (20) into (9), we obtain (10).

APPENDIX II: PROOF OF RESULT 2

We use the simplified expression (10) with (19) to obtain:

hW
H
β,n0(jω)Φxx(jω)hWβ,n0(jω) =

φxn0xn0
(ω)λ2(ω)

[β + λ(ω)]2
, (21)

uT
n0Φxx(jω)hWβ,n0(jω) =

λ(ω)φxn0xn0
(ω)

β + λ(ω)
, (22)

and

hW
H
β,n0(jω)Φvv(jω)hWβ,n0(jω) =

λ(ω)φxn0xn0
(ω)

[β + λ(ω)]2
. (23)

Plugging (21) and (22) in (5) leads to (14). Plugging (23) in (6) leads
to (15). Finally, plugging (23) and (21) in (7) leads to (16).
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