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Abstract—Tremendous effort was previously made to
estimate the location of moving sources with large an-
gular velocities. However, to the best of our knowledge,
no previous work has thoroughly investigated the effect
of the combined angular velocity and mobile speed on
the spectrum of the signal received by an antenna-
array. In this contribution, we address this issue in the
particular context of wideband CDMA transmission.
We first show both by theoretical development and by
simulations that the maximum frequency shift is the
sum of the conventional Doppler term and a new term
due to angular speed and that it is a linear function
of both. We also show that the additional frequency
shift due to the angular speed increases channel iden-
tification errors and thereby degrades the performance
of antenna-array receivers. This performance loss be-
comes even higher at a larger number of antennas in
the array.

I. Introduction
Many research efforts were spent to address the prob-

lem of time-varying direction of arrival (DOA). Most of
these studies concentrated on evaluating the localization
of sources which have significant angular velocities [1], [2].
However, to the best of our knowledge, no previous work
has thoroughly investigated the effect of the combined
angular velocity and mobile speed on the spectrum of the
signal received by an antenna-array. In this contribution,
we address this issue in the particular context of wideband
transmission using antenna-array receivers.

To carry out this study, we consider propagation in a
selective Rayleigh-fading multipath environment. The con-
ventional power spectrum density (PSD) derivation was
provided in details in the seminal work by Jakes [3]. It was
shown there that the maximum frequency shift of the PSD
corresponds to the Doppler shift. Derivation of a closed-
form expression for the maximum frequency shift of the
PSD when the mobile has a constant speed and significant
angular velocity represents one of the contributions of this
paper. Evaluations by simulations of the PSD show that
the theoretical and simulated maximum frequency shift
are almost identical. This result confirms, first, that the
conventional Doppler term and the term due to angular
speed are additive. Second, it suggests that the maximum
frequency shift is a linear function of the angular speed.

Additionally, another contribution of this paper in an as-
sessment of the impact of time-varying DOA on WCDMA

receivers performance in terms of channel identification
error. Numerical results show an important degradation of
the receiver performance. This loss becomes even higher at
a larger number of antennas in the array [6].

II. Data and Time-Varying DOA Models

We consider a single-user receiver structure on the
uplink direction (portable-to-base station) of a cellular
wideband CDMA system. Let us assume that each base
station is equipped with M receiving antennas. We con-
sider P propagation paths in a selective fading multipath
environment. The user’s binary phase shift keying bit
sequence is first differentially encoded as bn = b

¯nbn−1 at
a rate 1/Ts, where Ts is the bit duration.

After despreading the data sequence at the receiver side,
we form for each path p = 1, · · · , P the corresponding M×
1 despread vector:

Zp,n = Gp,nεp,nψnbn + Np,n , (1)

where ψ2
n is the total received power and ε2

p,n is the
normalized power fraction of the total power received over

the p-th multipath (i.e.,
P∑

p=1
ε2
p,n = 1). The M × 1 vector

Gp,n = [gp,1,n, · · · , gp,m,n, · · · , gp,M,n]T , with norm
√

M ,
denotes the channel vector from the transmitter to the
multi-antenna receiver over the p−th multipath.

For more efficient joint space-time processing, the M×1
vectors Gp,n are aligned to generate the following MP ×1
data observation vector:

Z
¯n = [ZT

1,n, · · · , ZT
P,n]T = H

¯nsn + N
¯n , (2)

where sn = ψnbn denotes the signal component, H
¯n =

[ε1 ,nG1,n, · · · , εP,nGP,n] is the MP × 1 space-time chan-
nel vector with norm

√
M . N

¯n = [N T
1,n, · · · ,N T

P,n]T is a
space-time uncorrelated Gaussian interference vector with
mean zero and variance σ2

N after despreading of the data
channel. The resulting input SNR after despreading is
SNRin = ψ2

σ2
N

per antenna element.
The vector channel Gp,n is considered as a superposition of
propagation path contributions associated to a continuum
of angles of arrival (AOA) θ, propagation delays τ and
Doppler angles φ [7].

Considering a linear antenna array and for an angular
spread Δθ = 0 , the propagation follows a plane wave with
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a specified direction of arrival θp,n. The channel vector
Gp,n could be written as follows:

Gp,n = rp,nF (θp,n) , (3)

where rp,n is a phase shift due to Rayleigh fading and F (θ)
is the array propagation vector, defined as:

F (θ) =
[
1, e−2jπ sin(θ)

x1
λ , · · · , e−2jπ sin(θ)

xM
λ

]T

, (4)

where λ is the wavelength, and xm, m = 1, · · · ,M , are the
sensor positions of a linear antenna array ULA.

In this paper, we assume that the DOA in (4) is time-
varying. We model the source motion by taking the Taylor
series expansions of θ(t + nTs) as follows [1], [2]:

θ(t + nTs) = θ(t) + θ̇nTs + θ̈(nTs)2/2 + . . . (5)

Let us consider a time-varying DOA environment in
which the first-order polynomial approximation of the
DOA realization is assumed. Therefore, the time variable
DOA is postulated as [4]:

θp,n = θp,0 + θ̇nTs , (6)

where θp,n is the DOA of the p-th wave at the sampling
instant nTs. The initial direction of arrival θp,0 is assumed
to be uniformly distributed over [−π, π].

III. Impact of the Time-Varying DOA on the
Spectrum Width

Let xm denote the position of the m-th antenna and λ
the wavelength. We show that the PSD Sm

g (f) of gp,m,n =
rp,ne−2jπ sin(θp,n) xm

λ is as follows:

Sm
g (f) =

l=+∞∑
l=−∞

k=+∞∑
k=−∞

S

(
f +

lθ̇

2π
+

k

Ts

)
J2

l (2π
xm

λ
). (7)

Equation (7) shows that the RF spectrum of gp,m,n,
Sm

g (f), is an infinite sum of replicas of the Rayleigh
spectrum S(f) (see [3] for details), modulated in amplitude
by J2

l (2π xm

λ ). These replicas are shifted in frequency by
multiples of 1/Ts and lθ̇/(2π). The maximum frequency
shift is then obtained as follows:

fmax = fD + |l0| θ̇

2π
, (8)

where l0 is the index of the Bessel function such that
|Jl(2π xm

λ )| is maximum.
It is worth noting first that the maximum frequency

shift fmax has a close dependency on the antenna position
xm. Second, the maximum frequency shift fmax on each
antenna is the sum of the conventional Doppler term fD

and a new one fθ due to the angular speed which is given
by:

fθ = |l0| θ̇

2π
. (9)

The angular speed should satisfy the following condi-
tion:

θ̇ < θ̇max =
π

|l0|
(

1
Ts

− 2fD

)
, (10)

otherwise the channel will be quasi-uncorrelated, the base-
band PSD being formed by multiple and independent rays
over [− 1

2Ts
, 1

2Ts
] in this case.

IV. Validation and Evaluation by Simulations

A. Maximum frequency shift validation

In this section, we validate by simulations the theoretical
derivations of the power spectrum density and the maxi-
mum frequency shift developed in the previous section.

For this purpose, we use the channel model in [3] to
generate P = 3 equal-power Rayleigh-fading channel coef-
ficients. Initial DOA values for these paths are θ1,0 = π/7,
θ2,0 = −π/5 and θ3,0 = −π/3. At the receiver, we consider
M = 8 or 16 antenna elements of a uniform linear array
(ULA). In this part of study, transmission is assumed
noise-free.

The position xm of an antenna element in a uniform
linear array is defined as: xm = [+M

2 , . . . ,−M
2 ], m =

1, . . . , M .
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Fig. 1. Simulated PSD for different antenna positions m at θ̇ =
3× 10−4 rad/sym with a ULA of M = 16 sensors and v = 25 Km/h.

In Figs. 1 and 2, we provide the PSD for different
antenna positions and angular speeds, respectively, at
a constant vehicular speed v = 25 Km/h. The results
suggest the following:

• For an antenna position close to the center of the
ULA, the shift in frequency is very close to fD.
Indeed, fθ still affects the whole system but in this
specific position, it has a negligible value (around 1
Hz for θ̇ = 3 × 10−4 rad/sym) compared to fD = 45
Hz.

• Moving left or right to either end of the ULA, the
frequency shift fθ due to the presence of θ̇ increases
significantly. At the first position xm = M/2, it has
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Fig. 2. Simulated PSD for different angular speeds θ̇ at antenna
position m = 1 with a ULA of M = 16 sensors and v = 25 Km/h.
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Fig. 3. Maximum frequency shift versus angular speeds θ̇ at v = 0
Km/h for the antenna position m = 1 of a ULA of M = 16 sensors.

a maximum value of about 20 Hz compared to 8 Hz,
for xm = M/4 or 1 Hz for xm = 1.

Derivation of the closed-form expressions for the maxi-
mum frequency shift in (8) and fθ in (9) are one of the two
key contributions of this paper. To validate by simulations
these results, we adopt the following strategy: first we set
the mobile speed v to 0 Km/h to eliminate the Doppler ef-
fect, i.e, fD = 0 Hz. We then plot in Figs. 3 and 4 both the
theoretical and simulated maximum frequency shifts for
different angular speeds and different indexes l0(xm) that
maximize the Bessel function J2

l (2π xm

λ ). These figures
show almost identical theoretical and simulated results.

Second, we had to demonstrate that the conventional
Doppler term and the one due to angular speed are
additive and that the maximum frequency shift has a
linear relationship with both terms. We plot in Fig. 5
the measured maximum spectrum shift versus the angular
speed θ̇ at 0, 25 and 50 Km/h, resulting in a Doppler shift
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Fig. 4. Maximum frequency shift versus l0 at v = 0 Km/h for a
ULA of M = 16 sensors.

fD of about 0, 45, and 90 Hz, respectively. This figure
confirms first that fmax is a linear function of the angular
speed θ̇ like what was suggested by (8). Besides, it shows
that the frequency difference between curves at v = 25
Km/h, v = 50 Km/h and the curve at v = 0 Km/h for
all values of θ̇ represents the Doppler term fD. This result
confirms that both terms are additive.
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Fig. 5. Maximum frequency shift versus angular speed θ̇ for the
antenna position m = 1 of a ULA of M = 16 sensors.

On the other hand, if the angular speed is close to a
limit θ̇max value for a fixed element position, the additive
impact on the spectrum of the angular speed disappears.
In this case, we notice the existence of various dominating
rays. Hence, the resulting spectrum appears as that of a
quasi-uncorrelated channel.

The condition over θ̇ established in (10) is plotted in Fig.
6 and compared to measured θ̇max. This value is obtained
whenever the spectrum shows independent rays. The small
difference between curves shows that the approximation
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and simplification made to derive θ̇max is acceptable.
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Fig. 6. Measured and theoretical angular velocity limit θ̇max.

B. Impact of the angular speed on the performance of
WCDMA antenna-array receivers

1) Overview of the tested receiver: To carry out this part
of this contribution, we selected the spatio-temporal array-
receiver [5] as a common array-processing core structure.
At iteration n, this blind array receiver uses the channel
estimate Ĥ

¯n to extract the data signal component by
spatio-temporal MRC:

ŝn = Re

{
Ĥ
¯

H

n Z
¯n

M

}
. (11)

The DBPSK data sequence bn is then estimated as b̂n =
sign{ŝn}. The receiver feeds back the estimate of the data
signal component ŝn (or ψ̂nb̂n) in a decision feedback iden-
tification (DFI) scheme to update the channel estimate as
follows:

Ĥ
¯n+1 = Ĥ

¯n + μ(Z
¯n − Ĥ

¯nŝn)ŝn , (12)

where μ is the adaptation step-size. This DFI scheme
identifies the channel within a constant sign ambiguity
a = ±1, thereby giving Ĥ

¯n � aH
¯n and b̂n � abn. However,

differential decoding of b̂n resolves the sign ambiguity in
the BPSK symbol estimates b̂

¯n = b̂nb̂n−1.
The total power received from the desired user is esti-

mated for power control by:

ψ̂2
n = (1 − α) ψ̂2

n−1 + α |ŝn|2 , (13)

where α � 1 is a smoothing factor, while the bit sequence
b̂n is estimated from the sign of ŝn.

In this paper, we define the channel misadjustment as
the mean square error per diversity branch of channel
identification in both space and time as:

β2 =
E

[‖ΔH
¯n‖2

]
MP

=
E

[
‖Ĥ
¯n − H

¯n‖2
]

MP
(14)

2) Simulation setup: We consider a wireless channel
characterized by P = 3 equal power Rayleigh fading paths
propagating from directions with time varying DOAs.
Each mobile transmits a BPSK data sequence received by
a uniform linear array (ULA) of M = 8 or 16 antenna
elements. Two representative mobile speeds of almost 5
and 25 km/h resulting in a Doppler shift of about 9 and
45 Hz, respectively at a carrier frequency of fc = 1.9 GHz
are examined. Power control (PC) requests an incremental
change of ±0.625 dB in transmitted power every 0.625 ms
and an error of 10% over the PC bit command.

An analytical expression for the optimum step-size μ
was previously derived in [6]. Its expression provides a
minimum channel estimation misadjustment using the
DFI scheme [5].

3) Simulation results: In Figs. 7 and 8 , we plot the
identification error versus the input SNR in dB for both
mobile speeds of v = 5 Km/h and v = 25 Km/h.

We plot curves for θ̇ = 0, θ̇ = 3×10−4 and θ̇ = 3×10−3

rad/sym, resulting in a maximum frequency shift (at the
antenna position xm = M/2) of about fθ = 0, fθ = 8.3 and
fθ = 83 Hz, respectively, for M = 8 and fθ = 0, fθ = 19.3
and fθ = 193 Hz, respectively, for M = 16 sensors.

Results suggest the following:

• At a reduced mobile speed of v = 5 Km/h, a loss
of about 0.5 and 5.5 dB in identification error is
measured at an angular speed of θ̇ = 3 × 10−4 and
θ̇ = 3×10−3 rad/sym, respectively. This is due to the
sole effect of angular speed which is more important in
the case of θ̇ = 3×10−3 rad/sym where the frequency
shift is about 10 times larger for θ̇ = 3×10−4 rad/sym.
The loss increases with more antennas due to the
increase of fθ from 8.3 to 83 Hz for M = 8 and from
19.3 to 193 Hz for M = 16.

• The angular speed at θ̇ = 3 × 10−4 has a negligible
impact on the receiver identification error at a mobile
speed v = 25 Km/h. Whatever is the value of the
SNR, the gap between curves at θ̇ = 0 and θ̇ =
3×10−4 remains negligible. At a higher mobile speed,
the impact of the angular speed becomes negligible
on receiver identification. We can see a noticeable
degradation in the identification error only for a large
ULA.

• Overall, the performance degradation in terms of
identification error of the receiver due to the angular
speed is even higher when the mobile speed is slow.
Besides, it depends mainly on the number of antennas
in the ULA. Therefore, when considering an increase
in the number of antenna elements as a solution
to any antenna-receiver performance improvement, a
tradeoff should be made between losses in identifi-
cation accuracy and capacity or spectrum efficiency
enhancement. This result provides a new insight into
antenna-array receiver design.
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Fig. 7. Identification error vs SNR (dB) for different angular speeds
at v = 5 Km/h with (a): M = 8 and (b): M = 16 sensors.

V. Conclusions

In this paper, the effect of the combined angular velocity
and mobile speed on the spectrum of the signal received by
an antenna-array has been investigated in the particular
context of wideband CDMA transmission. By either theo-
retical development and simulations it was shown that the
maximum frequency shift is the sum of the conventional
Doppler term and a new term due to angular speed and
that it is a linear function of both. Additionally, it was
also shown that the additional frequency shift due to
the angular speed increases channel identification errors
and thereby degrades the performance of antenna-array
receivers. This performance loss becomes even higher at a
larger number of antennas in the array.
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Fig. 8. Identification error vs SNR (dB) for different angular speeds
at v = 25 Km/h with (a): M = 8 and (b): M = 16 sensors.
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tions), Montréal, Québec, Canada, 2006.
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