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Abstract- This paper discusses the use of neural networks 

in an underground radio-localization system. In a highly 

aggressive environment such as mines, reliability and 

robustness are essential to any operational system. Using 

UWB as the physical wireless propagation medium and 

combined with fingerprinting-geolocation and neural 

networks, this work tends to overcome many of the 

problems encountered in indoor environments. Full 

description of the system and the adopted approach will 

help accentuate the role of neural networks in improving 

the overall performance. Moreover a comparison 

between MLP and RBF performance is presented 

providing a clear evidence of the role and importance of 

the neural networks in providing a good accuracy and 

precision to the final system.  

I. Introduction 

In the last decade, and with the improvement in 

neural networks on both theoretical and hardware 

levels, a lot of effort was made for introducing them 

into practical applications. As a result, neural networks 

have been adopted in many systems. In this work, we 

try to benefit from neural network theory and 

capabilities in order to investigate the feasibility of an 

underground localization system. An emerging service 

with many domains of applications [1][2], indoor 

localization, nevertheless faces many challenges that 

have to do basically with the surroundings and the 

propagation properties of electromagnetic waves in 

those environments. 

The primary reason for this work is security in a 

mining industry that is considered one of the most 

dangerous and hazardous professions with a very 

aggressive environment. One major challenge in such 

environments (as in the case of indoor localization) is 

the absence of line of sight (LOS), which renders the 

typically used information like the RSS, TOA, or 

TDOA incorrect or not accurate because their values 

no longer echoe the real distances travelled by the EM 

wave [3][4][5]. Another challenge is due to the very 

nature of the galleries that deteriorate the signal 

because of the multipath effect. In fact, underground 

surfaces are very rough, which causes severe multipath 

and fast fading phenomena and this represents the 

second major problem for wireless communication of 

any type and more importantly for localization that 

relies on time or power information. 

In addition to the previous considerations, many 

practical factors can and must be thought of when 

choosing the final system; factors like the total cost of 

the system, its coverage capabilities, its interoperability 

with other existing systems and techniques, etc. One 

should finally note that the accuracy and precision of 

the overall system are the key evaluation features. 

II. Localization technique 

The fingerprinting localization concept is 

relatively new. It has been first proposed for dense 

urban areas tracking systems, and the results were 

comparable to the most advanced and more 

complicated outdoor localization techniques. This 

technique is based on the notion of identifying a 

specified position by relying on some data that can 

represent this location. More precisely, it has the same 

concept as human fingerprinting. In a given area were 

the system needs to be implemented, different 

information can be used to construct a fingerprint that 

can identify different parts of the area [6][7][8]. The 

technique consists of two phases: the first comprises 

the choice of the appropriate data to constitute a 

fingerprint and subsequently to collect this 

information. The second phase consists of using the 

already built database in order to find locations in real 

time by comparing a target related signature 

(fingerprint) with the database content [9]. 

a. UWB fingerprint 

Theoretically any information can be used as part 

of the signature with the limitation that this 

information is consistent, it helps forming a unique 

signature and it is reproducible. This led to some works 

proposing different time-based or power-based 

signatures [9][10]. Here we use UWB and try to 

benefit from its advantages in building the fingerprint 

[11][12][13]. UWB allows high time resolution at the 

receiver, which is crucial on every level of a 

localization scheme [6] [14][15]. This would also 

allow a better multipath resolvability.  Another feature 

that increases multipath resolvability is the very small 

cycle duration, which gives the receiver enough time 

between successive transmissions to clearly identify 

different copies (versions, components) of the same 

originally transmitted signal. Additionally, the small 

cycle reduces any possible ISI effects. Moreover, the 
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small cycle and high multipath resolvability permit 

higher collection of energy, regarded as a gain. 

Normally in narrow band transmissions, any energy 

outside of the considered peak be lost, this is not the 

case with UWB, where energy can be gathered from 

different replicas of the same signal [16],[17],[18], 

[19],[20]. Another important aspect in the choice of 

UWB is in fact its wide frequency range. In indoor 

environments, frequency selectivity is a typical 

behaviour of the channel. But the very large frequency 

span assures that most or part of the transmitted signal 

will reach the receiver. On the other hand, low 

frequency components tend to be more penetrating and 

have a better chance of overcoming an obstacle that 

can block the channel. 

Subsequently, UWB was selected as the basis of 

the fingerprint where the CIR
1
 would constitute the 

origin of the different signature components. To this 

end, multiple measurement campaigns have been 

conducted in the desired environment, each 

representing a different scenario. The accumulated data 

was afterwards analyzed in order to identify a possible 

fingerprint. A final three-component signature was 

selected, two of which are directly synthesized from 

the CIR and the third is related to both the 

measurement campaign and neural networks 

performance.  

Considering that the channel variations are very 

slow with respect to the pulse repetition rate, the 

channel can then be seen as stationary and the final 

received signal presentation would be [12]: 
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where n  and
np  identify the different copies of the 

same originally transmitted pulse, ( )h t is the channel 

impulse response, ( )s t is the originally transmitted 

signal, and ( )n t is the noise. The IR
2
 would be: 
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This IR takes into consideration the multipath 

phenomenon, and it can be used to derive many time, 

power, and frequency parameters that specify the 

characteristics of a given channel. The two CIR related 

signature components are derived from this formula: 

1. The total multipath gain is represented by the 

following formula:  
2
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This is our first signature component. 

                                                           
1 Channel Impulse Response. 
2 Impulse Response. 

2. The excess delay, frequently used to characterize 

the PDP
3
, is the second chosen parameter, with a 

mathematical representation : 
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Both parameters are related to the multipath and to the 

power loss behaviour of the channel. 

In fact, by using the fingerprinting technique, we 

are no longer interested by a defined propagation 

model of the channel in order to estimate and interpret 

time and power information. We limit our interest to 

the chosen parameters and their relation with the 

position of their computation. Here comes the 

importance of using Neural Networks. MLP‟s are 

known for their ability to estimate a given function 

[21], and to approximate it to a high order of accuracy 

if proper training was conducted. This is discussed in 

the following section. 

b. Neural networks for fingerprint 

interpretation 

The theoretical maximum error for a 

fingerprinting-based system would be equal to: 

max  ,                          (6)
2

sepd
e   

with 
sepd  being the distance separating two 

consecutive measurement positions during the dataset 

building phase. We stress the fact that this is a 

theoretical maximum, because in real systems, errors 

have been found to be higher. In fact, any small change 

in the received data can lead to an error that is 3 times 

the theoretical one. But for the neural networks, due to 

interpolation capabilities (and limited extrapolation) 

[22], the theoretical error can be zero, and as will be 

shown in the results section, the real obtained error is 

much smaller than those obtained using other 

algorithms. In order for the neural networks to provide 

such a performance, we need to find the best 

architecture with the most convenient training 

algorithm. In our case, we are not studying the 

convergence theory of neural networks; a trial and 

error approach has been adopted in order to find the 

best combination of both architecture and training. 

Furthermore, once training has been adopted for a 

given neural network in a given scenario, it does not 

need to be changed or re-processed during the active 

real-time localization process, and this is one of the 

reasons why we adopted trial and error for finding a 

suitable combination.  

Another benefit to the use of neural networks is 

their ability to combine information and techniques. In 

database search methods, the system would only use 
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values of the fingerprint and find its nearest Euclidian 

distant entry in the database. On the other hand, given 

the fact that neural networks approximate functions, 

and given the fact that the used fingerprint components 

are to a large extent related to delay and power loss 

which in turn are related to distance, the neural 

network appears to be combining both received signal 

strength (RSS) and time delay (TDOA-TDA) based 

systems. The system can then be thought of as using a 

hybrid technique, but with the advantage of not 

requiring any additional computational time or power, 

and without increasing the complexity of the system 

itself. 

In concordance with the previous statements, it 

should be noted that neural networks would be having 

an impact on both phases of the fingerprinting 

technique. In the first phase, it influences the build up 

of the dataset of signatures as well as the signature 

itself. This is a mutual influence because the total 

number of a signature‟s components would influence 

the architecture of the neural network starting from the 

input layer and up. Additionally, the training process 

would vary accordingly. In order to give a proof of the 

importance of the network architecture and training 

process, this work included a comparison of two 

different back propagation networks, namely: an 

MLP
4
, and an RBF

5
.  Both will use the same training 

and testing sets, but as will be seen, the final results 

will be dissimilar. The same training process is used 

for all the RBF networks, but different algorithms are 

used for the MLPs in the different scenarios. On the 

other hand, for the second phase of the fingerprinting 

algorithm, it really consists of the real-time 

localization, which in our case would be to use the test 

set in order to validate the performance of the system. 

It is clear how the neural networks would influence this 

phase by directly influencing the possible set of 

outputs. Furthermore, neural networks provide a very 

important characteristic for the second phase: a real-

time response with minimal delay. In reality other 

database search and comparison algorithms require a 

lot of computational power in order to provide quick 

results and even with that they will never be able to 

reach the performance of a neural network where the 

response is almost instantaneous and without requiring 

additional resources form the system. The time 

consuming cumbersome work of training the network 

is carried out during the offline phase before the 

deployment of the system. An additional benefit is the 

robustness of the network once properly trained in the 

first phase. 

We should mention that a third component of the 

signature is included; this one is related to the good 
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functioning of the neural network and will be discussed 

in the section describing the measurement campaigns.  

Finally, our network inputs consist of the three 

signature components previously discussed (total 

multipath gain, excess delay, flag), and the outputs are 

the (x, y) coordinates. All additional information on the 

neural networks architecture and learning algorithm 

will be stated when considering the corresponding 

scenario. 

III. Measurement scenarios 

This work is about underground indoor 

localization and hence the measurement campaigns 

scheduled to build datasets for the proposed system 

were conducted in an underground mine at a level 

situated 40m beneath the surface. Such an environment 

presents many difficulties as for example unlevelled 

ground that limits mobility of the equipment. In order 

to conduct UWB measurements, a network analyzer 

was used. It would perform frequency sweeping over 

all the bandwidth of choice. The received sample is 

then translated into the time domain using FFT. The 

measurement equipments included an UWB power 

amplifier at the transmitter and an LNA at the receiver 

end, in order to increase the range of the analyzer. 

Additionally, UWB omnidirectional antennas were 

used. Antennas where placed at 1.5m from ground, but 

due to the geology of the environment, most of the 

time the transmitter and the receiver were not at equal 

heights. All measurements were in the band going from 

3 GHZ to 10 GHZ, which is the entire UWB allowable 

band. During each sample measurement, the channel 

should be stationary and in fact due to the very short 

duration of a sweep the channel can be considered as 

such. Furthermore, in order to make the measurement 

sample as representative of the channel as possible, we 

used averaging over 10 consecutive sweeps for the 

same location.  Measurements were taken at distances 

of 1 m meter apart, following a line crossing through 

the middle of the gallery. This distance from the 

transmitter antenna represents the „x‟ component. On 

the other hand, two additional measurements are 

conducted at the same „x‟ but with 1 m meter away to 

the left and to the right of the center measurement in 

such a manner as to cover the width of the gallery. So 

at the same „x‟ ordinate we have three different 

measurements located at different „y‟ abscissa values. 

In order to study the performance of the localization 

system in different scenarios, both LOS and NLOS 

campaigns were conducted. 

For the LOS case, the campaign covered a total 

distance of 40 meters after which the received signal 

became too weak so as to provide useful fingerprinting 

information especially considering that this is DS 

transmission. Furthermore, during the analysis of the 

final dataset, we were constrained to only use 

measurements going up to 36m. Figure 1 below shows 
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the architecture of the gallery and the placement of the 

measurements. 

The NLOS campaign was conducted in the same 

condition as for the LOS. Nevertheless, due to the 

higher power loss, it only extended to a distance of 

36m after which the signal was completely 

overwhelmed by noise. Moreover, during the analysis 

phase, only measurements covering up to 27m proved 

to be utilizable. 

 
Fig.1 LOS measurement campaign. 

 
Fig.2 NLOS measurement campaign. 

Figure 2 gives an insight into the actual measurement 

placements. In this campaign, the first 6 meters present 

a line of sight and a partial line of sight exists up to 9 

meters after which we have a complete absence of 

sight. Furthermore, the ground is unlevelled with a 

slope of more than 6 degrees. 

After the dataset was built, and during the 

treatment of the data, it was realized that due to the 

structure of the gallery combined with the placement of 

the measurements, some samples had the same „y‟ 

abscissa value for what is to become different 

fingerprints. This fact led to a deterioration of the 

learning ability of the neural network. In fact this 

network is exposed to different signatures but is 

supposed to give identical locations for them. 

Moreover, those similar „y‟ values are contradictory 

with the uniqueness of the fingerprint concept. In order 

to overcome this inconvenience, neural networks 

theory proposes the use of a sentinel marker. This 

approach was used, where we incorporated an 

additional third component –a flag– to the fingerprint. 

This flag has one of three values {1, 2, and 3}, 

indicating left, center and right correspondingly. This 

proved to be very helpful in improving the 

performance of the network. 

IV. Results and interpretation 

Usually to evaluate the performance of a 

localization system, there exist two principal 

parameters, namely: accuracy and precision. The first 

one refers to the difference between the real and 

estimated positions; it is usually the error between the 

two positions in meters or in centimetres. The second 

parameter is the percentage of time at which the given 

accuracy is respected. In order to evaluate our system 

with respect to both parameters, we will present the 

CDF
6
 functions of the error, this error being the 

difference between the real and estimated coordinates 

of the locations. In this way, the graph plots will 

present different accuracies with their relative 

precisions.  On the other hand, with the aim of further 

portraying the use of neural networks, their 

susceptibility to the different localization scenarios, 

and the importance of the training algorithms of 

choice, for each set of results we will indicate the 

neural network architecture including the number of 

layers and the elements per layer. Then, we will 

indicate the training algorithm that provided the 

network with the best outcome. It should be reminded 

that an additional comparison of RBF and MLP 

potentials for our system is included. 

GRNN
7
 (RBF) are used in general to approximate 

functions. They are easier to construct and easier to 

train than the MLPs. In fact, their architecture consists 

of one hidden layer, with radial activation functions. 

This layer has as many elements as the number of 

inputs, and thus it will have the same number of 

elements for our different scenarios. GRNN also has an 

output layer with linear activation functions. This layer 

also has as many elements as the inputs. So in general 

this architecture for the GRNN networks is the same in 

all the analysis. 

Normally two sets of results can be analyzed, the 

error for the training data set and the one for the testing 

data set. The first set is seen by the network during the 

learning process while the second is only used for 

testing. Nevertheless, the later set reflects the real-time 

behaviour of the network and will therefore be 

analyzed. 

a. First scenario (LOS) 

In the case of LOS campaign, the adopted MLP 

had 2 hidden layers with respectively „8‟ and „12‟ 

elements. The learning algorithm was based on 

Bayesian regularization which is normally known for 

its high generalization capabilities. The following 

figures give the CDF for both „x‟ and „y‟ coordinates 

for the testing values. 

For the „x‟ coordinate, the error is bellow 0.5 m 

for 72% of the cases (Fig. 3). Similar results can be 

observed for the „y‟ coordinate with an error of 0.5 m 

in 80% of the cases as seen in Fig.4. It should be 

mentioned that the maximum real „y‟ value is 26 m in 

comparison to a 36 m for x. This can partially explain 
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the higher precision in „y‟, but in fact the ratio of error 

to maximum coverage distances is relatively identical. 

 
Fig.3: CDF for the error in „x‟, MLP, LOS. 

 
Fig.4: CDF for the error in „y‟, MLP, LOS. 

For the GRNN network, the architecture has been 

discussed previously but it remains to mention that the 

spread which provided the best results was equal to 

„0.1524‟. The error was larger than for the MLP 

network where in this case the accuracy of 0.5m had a 

precision of only 51%. Another deterioration found for 

GRNN is that the maximum error for the test dataset is 

not bound by the maximum error of the training phase. 

Figures 5 and 6 show the GRNN results. 

 
Fig.5: CDF for the error in „x‟, GRNN, LOS. 

 
Fig.6: CDF for the error in „y‟, GRNN, LOS. 

b. Second scenario (NLOS) 

In this case, one can expect less performance 

compared to the LOS case. For this scenario, the 

furthest distance with analyzable data was 27 m. In 

fact, for distances up to 20 m the error was very small 

and the performance deteriorates significantly between 

20 m and 27 m. 

The MLP network that gave the best results had 

„7‟ elements in the first hidden layer and „12‟ in the 

second one. The training algorithm in this case used 

the scaled conjugate gradient with a total of 800 

iterations. The scaled gradient is very performing in the 

training process and that is without reaching 

overtraining. Fig.7 shows an accuracy of 0.5 m for a 

67% precision. This error is very close of the LOS 

case, a good result. 

The error in „y‟ follows the same behaviour as the 

one in „x‟, where Fig.8 shows an accuracy of 0.5 m for 

a precision of 60%, which is acceptable. The maximum 

error in this case is 1.1m for 7%. 

 
Fig.7: CDF for the error in „x‟, MLP, NLOS. 

 
Fig.8: CDF for the error in „y‟, MLP, NLOS. 

 
Fig.9: CDF for error in „x‟, GRNN, NLOS. 

 
Fig.10: CDF for error in „y‟, GRNN, NLOS. 

For the GRNN network, the architecture is always 

the same. The spread used in this scenario has a value 

of 0.1456. In this scenario as for the LOS case, GRNN 

does not provide a better performance than the MLP. 

In this case, GRNN has better results than in the LOS 

case. For the „x‟ coordinate, the error is of 0.6 m for a 

60% precision. It is clear that in this scenario, the 
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GRNN network has a comparable performance to that 

of the MLP. Moreover, in this scenario, the 

generalization capabilities of the GRNN are much 

better than for LOS one. The „y‟ coordinate gives a 0.4 

m error for 73% of the time. 

 According to the previous results and 

interpretations, one can see that the total performance 

is comparable and even better than most of the results 

found in the literature and especially for a medium 

with very high multipath. This is due to the use of 

UWB and neural networks. In fact the use of neural 

networks directly impacts the performance of the entire 

system by allowing a better interpretation of the 

parameters. If we look at the LOS and NLOS cases, 

although we are using the same parameters in order to 

localize the target, the performance is relatively stable 

which surpasses classical systems expectations. In fact, 

for other systems, a degradation of more than 30% is 

observed for NLOS scenarios. Additionally, neural 

networks provide a better performance for the 

fingerprinting technique, where in the classical case 

and using database search techniques, the system 

extensively deteriorates for new data. This is overcome 

by using the generalization properties of neural 

networks. 

V. Conclusion 

The overall performance surpasses many of the 

expected results for indoor localization. This is mainly 

due to the combination of UWB and neural networks, a 

combination that provides better propagation 

characteristics of the wireless transmitted signal, in 

addition to a better interpretation of the signature 

parameters due to the neural networks. This way, the 

system overcomes many of the difficulties encountered 

in such environments. 

Additional improvements to the system have been 

proposed. Part of those improvements is based on 

neural networks, where we proposed the 

implementation of a two-level localization scheme. 

The first level is a by-sector localization where the 

result is an area of presence this would be done using a 

mapping network. The second layer is a precise x and y 

localization and this would be done as seen in this 

paper. The first level would thus allow the choice of 

the network that would give the best second layer 

performance, where as seen here each sector can be 

best represented by a different MLP network. 
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