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Abstract— The problem of signal-to-noise ratio (SNR) es-
timation over time-varying flat fading single-input multiple-
output (SIMO) channels, for non constant envelope signals,
is addressed in this article when the signal is corrupted by
complex additive white Gaussian noise (AWGN). It is based
on the use of periodically transmitted pilot symbols to facilitate
the estimation process. It relies also on the detection of the
remaining symbols, and is therefore a decision directed (DD)
procedure. The normalized root mean square error (NRMSE)
is used as a measure of performance by Monte Carlo simulations
that validate our approach and its performance over a wide SNR
range.

I. INTRODUCTION

In recent years, there has been a lot of research interest in
SNR estimation. In fact, the development of some new ap-
plications for modern communication systems has motivated
work on SNR estimation techniques. The SNR knowledge is
often a requirement when dealing with, for instance, transmit
power control, adaptive modulation, handoff, dynamic alloca-
tion of resources or soft decoding procedures [1, 2]. A variety
of methods have therefore been developed. Blind techniques,
that do not use the a priori knowledge of the transmitted
symbols, are called non data-aided (NDA). Those which base
the estimation process on the knowledge of the transmitted
signal are called data-aided (DA) and they have the drawback
of limiting the system throughput due to the transmission of
known data. There are other methods that rely on the detected
transmitted data and they are qualified as decision-directed
(DD).

There are many articles that deal with SNR estimation
over flat fading [3, 4] and frequency-selective [5, 6] channels
that can be assumed constant over the estimation interval.
However, most of the derived methods are not applicable
when the channel is time-varying. In fact, even small time
variations over the estimation interval can dramatically de-
grade the performance of traditional, constant channel, SNR
estimators. A recent technique for SNR estimation over flat
fading time-varying channels was introduced by Wiesel and
Messer-Yaron [7]. Nevertheless, this method is only applica-
ble for constant modulus constellations, i.e. for phase shift
keying (PSK) signals. In fact, to the best of our knowledge,
the estimation/tracking of the instantaneous SNR over time-
varying channels for non-constant envelope constellations has
never been addressed before. Hence, we will present, in this

paper, a new technique for SNR estimation over flat fad-
ing time-varying SIMO channels, with quadrature amplitude
modulation (QAM) signals.

The remainder of this paper is organized as follows. We
will begin by deriving the new SNR estimator. Then, via
Monte Carlo simulations and using the NRMSE as a per-
formance parameter, we will study the performance of our
new DD method. We will see that the new technique can
estimate accurately the SNR, and that, for a wide SNR range,
it exhibits a performance similar to the one that could be
achieved if all symbols were ideally known to the receiver.

II. SYSTEM MODEL

Consider a digital communication system with a single-
input multiple-output configuration. We assume the channel
to be time-varying and frequency-flat fading. We also assume
that the transmitted data are corrupted by AWGN. All the
noise components are supposed to be of equal average power
σ2 and mutually uncorrelated across the different antenna
elements. Assuming an ideal receiver with perfect synchro-
nization, and considering the antenna element i, the input-
output baseband relationship can be written as

yi(n) = a(n)hi(n) + wi(n), n = 1, 2, . . . , N, (1)

where, at time index n and for each antenna element i, a(n)
is the nth transmitted symbol and yi(n) is the corresponding
received sample. hi(n) is the time-varying channel gain and
wi(n) is a realization of a zero-mean AWGN of variance σ2.
These received samples can be conveniently written in the
following N × 1 vector form:

yi = Ahi + wi, i = 1, 2 · · · , Na, (2)

where

yi = [yi(1), yi(2), . . . , yi(N)]T , (3)

hi = [hi(1), hi(2), . . . , hi(N)]T , (4)

wi = [wi(1), wi(2), . . . , wi(N)]T , (5)

A = diag{a(1), a(2), . . . , a(N)}. (6)

The superscript T denotes the transpose operator and N
stands for the total number of received symbols. The SNR
estimation problem may be stated as follows. Given some
known symbols (pilot symbols) and the received samples yi,



estimate the SNR, over each antenna element i, which is
expressed as

ρi =
∑N

n=1 |hi(n)|2|a(n)|2
Nσ2

. (7)

Most of the existing SNR estimation methods suppose that
the channel is highly correlated and can be assumed constant
during the observation interval. However, as shown in [7],
even small variations from these assumptions can dramatically
degrade their performance. A more appropriate model for the
time-variations of the channel coefficients is polynomial in
time [8, 9]. Accordingly, using Taylor’s series expansion, the
channel coefficients for a given antenna element i can be
written as

hi(n) =
Lc−1∑
m=0

ci;mtmn + Ri;Lc
(n), (8)

where ci;m is the mth polynomial coefficient for the channel
at antenna branch i and tn is the time index of the nth sample
(relative to the beginning of the estimation interval). The
mean-squared value of the remainder, Ri;Lc

(n), approaches
zero as Lc → +∞ or as ( fd

fs
)N → 0 [9], where fd is

the maximum Doppler frequency and fs is the sampling
rate. Therefore, in practice, for Lc sufficiently high or for
( fd

fs
)N << 1, the channel can be reasonably approximated by

a polynomial-in-time model, and one can write:

hi(n) =
Lc−1∑
m=0

ci;mtmn , n = 1, 2, . . . , N. (9)

Using eq. (9) and considering the entire observation interval,
the channel can be conveniently represented in the following
(N × 1) column vector form:

hi = TLc
ci, (10)

where

TLc
=




1 t1 · · · tLc−1
1

1 t2 · · · tLc−1
2

...
...

. . .
...

1 tN · · · tLc−1
N


 ci =




ci;0

ci;1

...
ci;Lc−1


 . (11)

Using eqs. (7) and (10), the SNR that we want to estimate
can be written as

ρi =
cH

i T T
Lc

AHATLc
ci

Nσ2
, (12)

where the superscript H stands for the Hermitian operator.
Moreover, from now on, for ease of notation, the subscript
Lc will be omitted and we will simply refer to the matrix
TLc

by T . We will also only consider cases for which the
number of received symbols N is chosen such that N > Lc.

III. FORMULATION OF THE NEW SNR ESTIMATOR

Our approach, in this paper, resembles the one presented
in [7], but QAM signals are considered instead of only PSK,
and the presence of pilot symbols is exploited to provide us
with a non-iterative solution. The approach also exploits the
presence of an array of antenna elements, at the reception,

instead of one antenna element. The idea behind the use of a
SIMO configuration is to exploit the intercorrelation between
the received data over all the antenna elements in order to
estimate the SNR on a given antenna branch. Indeed, using an
array of antenna elements has the major advantage to provide
us with a number of equations that can be sufficient to find
all the desired unknowns in eq. (12).

In fact, on one hand, the unknowns of the problem are
the Na vectors {ci}i=1,2,...,Na

and the N transmitted sym-
bols {a(n)}n=1,2,...,N . Note that each vector ci contains Lc

unknowns {ci;m}m=1,2,...,Lc
, the coefficients of the channel

corresponding to the antenna element i. The total number
of unknowns is therefore NaLc + N . On the other hand,
considering eq. (2) for i = 1, 2, . . . , Na, we see that we have
NNa independent equations. Hence, to be able to find all
the unknowns, we need NNa ≥ NaLc + N , which means
Na ≥ N

N−Lc
> 1 since, in practice, N can be chosen

sufficiently high. This is what justifies the effectiveness of
the SIMO configuration choice in our procedure.

Using eqs. (2) and (10), the input-output baseband rela-
tionship can be extended, with the presence of Na antenna
branches, to the following (N × Na) matrix form:

Y = ATC + W , (13)

where

Y = [y1, · · · ,yNa
], (14)

C = [c1, · · · , cNa
], (15)

W = [w1, · · · ,wNa
]. (16)

From eq. (12), one can immediately see that the estimation
of the SNR ρi, for each antenna element i, requires the
estimation of the matrices C and A. The matrix T is known
to the receiver and does not need to be estimated. In practice,
some data called pilot symbols, are often known to the
receiver. Contrarily to the method introduced in [7], we will
exploit the presence of Np > Lc such symbols in order to
provide a non-iterative solution. Let Ap denote the diagonal
matrix that contains such Np symbols and let Tp be the
corresponding time matrix which has the same form as matrix
T . By writing Φp = ApTp, eq. (13) reduces simply to

Yp = ApTpC + Wp, (17)

= ΦpC + Wp, (18)

where Yp and Wp are, respectively, the received data and the
noise components corresponding to the pilot symbols. In the
least square (LS) sense, an estimate Ĉp of C is given by

Ĉp = (ΦH
p Φp)−1ΦH

p Yp. (19)

Injecting this Ĉp in eq. (13), we can now estimate the matrix
A. In fact, by considering Φ′

p = T Ĉp, eq. (13) can be simply
written as

Y = AΦ′
p + W̄ . (20)

One should notice that we no longer have the same noise com-
ponents. In fact, W̄ contains the original noise components
W and an additional noise which is due to the replacement of
the matrix C by its estimate Ĉp. In the LS sense, an estimate



of A can be easily deduced from the transconjugate of eq.
(20) which is given by

Y H = Φ′H
p AH + W̄ H . (21)

Straightforward development yields the following expression
for the estimate Â of A

Â = Y ĈH
p (ĈpĈ

H
p )−1(T T T )−1T T , (22)

which, by writing Φ′′ = ÂT , allows the recomputation of a
refined estimate Ĉ of C:

Ĉ = (Φ′′HΦ′′)−1Φ′′HY . (23)

The SNR estimate ρ̂i, on the ith antenna, is therefore given
by

ρ̂i =
ĉH

i T T ÂHÂT ĉi

Nσ̂2
, (24)

which, using eqs (22) and (23), can be simply reduced to

ρ̂i =
yH

i Pyi

Nσ̂2
, (25)

where

P = Φ′′(Φ′′HΦ′′)−1Φ′′H , (26)

= ÂT (T T ÂHÂT )−1T T ÂH . (27)

Moreover, by writting

W̄ = [w̄1, w̄2, . . . , w̄Na
], (28)

then, from eq. (20) noise components are given by

w̄i = yi − ÂT ĉi, (29)

= yi − Φ′′ĉi. (30)

Therfore, the noise power estimate is given by

Nσ̂2 = (yi − Φ′′ĉi)H(yi − Φ′′ĉi), (31)

= (yi − Pyi)H(yi − Pyi), (32)

= yH
i (I − P )H(I − P )yi, (33)

= yH
i (I − P )yi, (34)

= yH
i P⊥yi. (35)

The SNR estimate ρ̂i, on the ith antenna element, reduces
simply to

ρ̂i =
yH

i Pyi

yH
i P⊥yi

. (36)

It should be noted that, in a geometric representation, P and
P ⊥ = I − P are projection matrices onto the “signal-plus-
noise” and “noise” subspaces, respectively. Note that, since,
for each antenna branch, the noise components are zero-mean
and are independent from the channel realization and the
transmitted symbols, these two subspaces are orthogonal.

IV. SIMULATION RESULTS

We will now assess the performance of our new estimator
by Monte Carlo simulations over 1000 realizations. The
NRMSE, given by eq. (37), will be used as performance
measure.

NRMSE(ρ) =

√
E{(ρ − ρ̂)2}

ρ
. (37)

The number of antenna branches will be set to Na = 8. The
DA method will refer to the case where all the transmitted
symbols are supposed to be known to the receiver (Np = N ),
while the DD method will refer to the case where only a
subset of the Np transmitted symbols is known to the receiver.
Fig. 1 shows the empirical NRMSE as a function of the
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Fig. 1. SNR NRMSE on one of the 8 antenna elements, 16-QAM, fs = 243
kHz, fd = 100 Hz, Lc = 5, N = 1000.

true SNR, under a Rayleigh time-varying fading channel, for
both the DA and DD scenarios. We notice that our LS-based
method performs well over the entire SNR range, more so
over the practical medium range of SNR values. We also
notice that our DD method performs the same as the DA
method when the SNR exceeds 10 dB.

Next, we will show that the estimation accuracy of our new
LS-based method is primarily dependant on the size of the
observation interval N .
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Fig. 2. Channel modulus and phase argument, and their estimates, on one of
the 8 antenna elements, SNR = 10 dB, 16-QAM, fs = 243 kHz, fd = 1000
Hz, Lc = 5, N = 100, Np = 0.1N .

Figs. 2 and 3 depict the estimation accuracy of the coef-
ficients (ci) of a complex channel. The maximum Doppler
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Fig. 3. Channel modulus and phase argument, and their estimates, on one of
the 8 antenna elements, SNR = 25 dB, 16-QAM, fs = 243 kHz, fd = 1000
Hz, Lc = 5, N = 100, Np = 0.1N.

frequency is set to fd = 1000 Hz. Only 100 transmitted
symbols are considered, which will be shown to be sufficient
to estimate the signal power but not enough to precisely
affaiblissement de parcours power σ2.

In fact, from Figs 2 and 3, we see that the channel
coefficients, for the considered the high SNR values (10
dB and 25 dB), are estimated with relatively high accuracy.
This results in accurate estimates for the matrices C and
A. Consequently, the signal power Pi = ĉH

i T T ÂHÂT ĉi is
estimated quite accurately and the main cause for performance
degradation, in the SNR estimation process, stems from the
inaccurate estimation of the noise power. A behavior that is
better illustrated in Fig 4.
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Fig. 4. SNR NRMSE on one of the 8 antenna elements for different Doppler
frequencies, 16-QAM, Lc = 5, fs = 243 kHz, Np = 0.1N .

Indeed, this figure depicts the effect of varying the size of
the observation interval N on the performance of our new
estimator. It shows the NRMSE for the DD approach over
a Rayleigh channel, when fd = 100 Hz and fd = 1000
Hz. In fact, the size of the estimation interval N can not
be arbitrarily chosen. This is because we should always
respect the condition ( fd

fs
)N << 1 so that the channel can

be accurately approximated by a polynomial in time. Indeed,
for a constant sampling rate, the value of N depends on the
value of the maximum Doppler frequency fd.

From Fig. 4, a significant difference in performance is

observed. In fact, when fd = 1000 Hz, to respect the
condition ( fd

fs
)N << 1, we have selected N = 100 symbols.

Consequently, with such a relatively low value of N, the noise
power σ2 can not be very accurately estimated. However, a
lower Doppler frequency (fd = 100 Hz) allows us to increase
the number of received symbols used in the estimation process
to N = 1000 symbols. Thus, we obtain a more accurate local
estimate of the noise power and consequently a more accurate
estimate of the SNR. In fact, the possibility of increasing the
number of samples over the observation interval obviously
increases the estimation accuracy over the entire SNR range.
Finally, it should be noted that the optimal choice of N
depends on the SNR value, as well as on the ratio ( fd

fs
).

V. CONCLUSION

In this paper, the estimation of the instantaneous SNR,
under time-varying flat fading SIMO channels, for QAM
signals was considered. We developed a novel LS-based SNR
estimator. Polynomial fitting is used to locally approximate
the channel. Our DD method bases the estimation process
on the use of pilot symbols to provide a non-iterative so-
lution. The new estimator was shown to have a satisfactory
performance over the entire SNR range. Also, for a wide
range of reasonably high SNR values, our DD method was
shown to exhibit a performance similar to the one that could
be achieved if all symbols were known to the receiver. The
impact of changing the size of the observation interval on
the performance of our new estimator was also studied. It
was shown that the accuracy of the our new technique can be
clearly improved by increasing the number of samples in the
estimation interval, provided that the size of the observation
interval still allows for a proper fit of the channel variations
using our polynomial model.
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