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Abstract— This paper investigates the capacity of generalized-
K fading channels. This very general model describes accurately
composite multipath/shaodwing fading channels which are widely
encountered in real-world environments. We derive closed-form
expressions for three adaptive transmission techniques, namely,
i) optimal rate adaptation with constant power, ii) optimal power
and rate adaptation, and iii) channel inversion with fixed rate.
The analytical expressions obtained match perfectly the results
obtained by computer simulations. These expressions provide a
good tool to assess the spectral efficiency of the aforementioned
adaptive transmission techniques over composite channels.

Index Terms— Shannon capacity, adaptive transmission tech-
niques and Generalized-K distribution.

I. INTRODUCTION

W IRELESS channels are commonly modeled as a mix-
ture of multipath fading and shadowing. In such

settings, the receiver is subject to the composite multi-
path/shadowed signal. This is generally the case for commu-
nication systems with low mobility or stationary users [1]-
[2]. This model is also encountered in certain land-mobile
satellite systems (see [3] and the references therein). Several
composite models were proposed in the literature. Two of
these are widely used and are the Suzuki channel [2] and its
generalization, the Nakagami-m shadowed channel [1]. The
main drawback of these two models is that the composite prob-
ability density function (pdf) is not in closed-form, thereby
making the performance evaluation of communication links
over these channels cumbersome. In order to obtain a practical
closed-form composite distribution, the log-normal shadowing
was approximated by a Gamma shadowing leading to the K-
distribution [4] and its generalized version [5]. This versatile
distribution proved to be particularly useful in evaluating the
performance of composite channels [5]-[9]. In the view of
the appropriateness of this distribution for characterizing real-
world communication links, it is appealing to inspect the
capacity of these channels.

Spectral efficiency of adaptive transmission techniques has
received extensive interest in the last decade. In [10], the
authors examined the capacity of Rayleigh fading channels
under different adaptive transmission techniques and different
configurations. Other fading channels, like Nakagami, Rician
and Weibull fading, were studied in [11] and [12]. In this
paper, we provide a thorough analysis of the capacity of
generalized-K fading channels under different adaptive trans-
mission techniques. Moreover, we show that when the shap-
ing parameters of the generalized-K pdf take certain special
values, we can obtain simple expressions for the capacity.

Another contribution of this paper is that we provide a closed-
form expression for the outage probability when the shaping
parameters are integers1.

Over a generalized-K fading channel, the pdf of the output
signal to noise ratio (SNR) is given by [7]

p(γ) =
aβ+1

2βΓ(m)Γ(k)
γ

β−1
2 Kα(a

√
γ), (1)

where k and m are the shaping parameters of the distribution,
with α = k − m and β = k + m − 1, and Kα(·) is the
modified Bessel function of the second kind and order α. In
(1), a =

√
4km

γ where γ is the average SNR. In general, the
parameter m is a positive real number. But in our analysis, we
will assume that m is an integer. On the other hand, we impose
no condition on k and assume that this parameter can take
arbitrary positive real values. An important special case falls
under the assumption that m = 1, and this corresponds to the
K-distribution. One of the nice properties of this distribution
is that the pdf of the instantaneous SNR at the output of a
maximum ratio combiner with M i.i.d. branches is readily
obtained from (1) by substituting m with Mm and γ with
Mγ [6]. Consequently, all the following study applies also if
maximum ratio combining (over i.i.d. fading) is employed at
the receiver.
The remainder of the paper is organized as follows. In section
II, we study the capacity of optimal rate adaptation with
constant transmit power. In section III, we provide closed-
form expressions for the capacity with optimal power and rate
adaptation. The capacity with channel inversion and fixed rate
is then examined in Section IV. In Section V, we give some
numerical results and show that the analytical expressions
obtained match perfectly the results obtained by computer
simulation. Finally, the paper concludes with a summary of
the main results in Section VI.

II. OPTIMAL RATE ADAPTATION WITH CONSTANT

TRANSMIT POWER

Under the optimal rate constant power (ora) policy, the
capacity is known to be given by [10]

< C >ora=
aβ+1

2βΓ(m)Γ(k)

∫ +∞

0

log2(1+γ)γ
β−1

2 Kα(a
√

γ)dγ.

(2)

1It should be stressed here that the closed-form expression in terms of the
hypergeometric function that was presented in [7] can not be used if α takes
integer values, since csc(πα) is zero in this case.
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For arbitrary α and β, this capacity has been expressed
in terms of Meijer-G functions in [7]. We will show next
that the capacity can be also written in terms of Lommel
functions. Then, since the evaluation of Meijer-G functions
can be sometimes laborious, we will show that, when k is an
integer plus one half, the capacity can be written in terms of
the more familiar sine and cosine integrals.

A. The capacity in terms of Lommel functions

With the change of variable x =
√

γ in (2), the capacity
can be re-written as follows

< C >ora=
aβ+1

2β−1Γ(m)Γ(k) ln(2)
Aα,m, (3)

where Aα,m is given by

Aα,m =
∫ +∞

0

ln(1 + x2)xα+2m−1Kα(ax)dx, (4)

and is derived in terms of the Lommel Functions in Appendix
I. Hence, using this, we obtain the closed-form expression
(5) provided at the bottom of this page, where (x)n =
Γ(x+n)

Γ(x) designates the Pochhammer symbol and Sµ,ν(.) are
the Lommel functions2.

B. Capacity when k is equal to an integer plus one-half

Assume now that there is an integer n such that k = n+ 1
2 .

Using [14, Eq.(8.468)], we have3

Kα(ax) =
√

π

2ax
exp(−ax)

n−m∑
l=0

Γ(n − m + 1 + l)(2ax)−l

Γ(n − m + 1 − l)Γ(l + 1)
.

(6)
The equation above, when injected in (3), gives

< C >ora=
aβ+0.5

√
π

∑n−m
l=0

Γ(n−m+1+l)Ll(a)
Γ(n−m+1−l)Γ(l+1)(2a)l

2β−0.5Γ(m)Γ(k) ln(2)
, (7)

where Ll(a) is given by

Ll(a) =
∫ +∞

0

ln(1 + x2)xn+m−l−1 exp(−ax)dx, (8)

2For a thorough presentation of the Lommel functions, we refer the
interested reader to [15].

3Since K−ν(x) = Kν(x), we assume for convenience and without loss
of generality that n ≥ m.

which can be evaluated using successive integration by part
and [14, Eq.(2.321.2)] as

Ll(a)=2
n+m−l−1∑

j=0

(n + m − l − j)j

aj+1

∫ +∞

0

xn+m−l−j

1 + x2
exp(−ax)dx.

(9)
After inserting (9) in (7), we obtain that the capacity with
ORA is

< C >ora =
aβ+0.5

√
π

2β−1.5Γ(m)Γ(k) ln(2)

n−m∑
l=0

Γ(n − m + 1 + l)
Γ(n − m + 1 − l)

× 1
Γ(l + 1)(2a)l

n+m−l−1∑
j=0

(n + m − l − j)j

aj+1
Υj,l(a), (10)

where Υj,l(a) can be evaluated using [14, Eq.(3.356.1)] and
[14, Eq.(3.356.2)] and is given in (11) at the bottom of this
page. In this expression, ci(.) and si(.) are the cosine and the
sine integrals, which are known to be defined by

ci(x) = −
∫ +∞

x

cos(t)
t

dt and si(x) = −
∫ +∞

x

sin(t)
t

dt,

(12)
respectively.

III. OPTIMAL SIMULTANEOUS POWER AND RATE

ADAPTATION

A. Capacity

For optimal power and rate adaptation (opra), the capacity
is known to be given by [10]

< C >opra =
aβ+1

∫ +∞
γ0

log2(
γ
γ0

)γ
β−1

2 Kα(a
√

γ)dγ

2βΓ(m)Γ(k)
(13)

=
bβ+1

∫ +∞
1

log2(x)xα+2m−1Kα(bx)dx

2β−2Γ(m)Γ(k)
, (14)

where b = a
√

γ0. Using partial integration, we can rewrite the
last equation as

< C >opra=
−bβ+1

2β−2Γ(m)Γ(k) ln(2)

∫ +∞

1

Jα,m(x)
x

dx︸ ︷︷ ︸
−Iα,m

, (15)

< C >ora =
aβ+1

2β−1Γ(m)Γ(k) ln(2)

m∑
j=1

(
2
a

)j−1

(−1)m−j(m − j + 1)j−12α+j+1Γ(α + j + 1)
S−1−α−j,α+j(a)

a

− aβ+1

2β−1Γ(m)Γ(k) ln(2)

m−1∑
j=1

(
2
a

)j−1

(m − j + 1)j−1

m−j∑
l=1

(−1)m−j−1−lΓ(α + l + j)22l+α+j−1(l − 1)!
a2l+1+α+j

, (5)

Υj,l(a) =
{

(−1)q−1[ci(a) cos(a) + si(a) sin(a)] + 1
a2q

∑q
t=1(2q − 2t + 1)!(−1)t−1a2t−2, if n + m − l − j = 2q + 1,

(−1)q[ci(a) sin(a) − si(a) cos(a)] + 1
a2q−1

∑q
t=1(2q − 2t)!(−1)t−1a2t−2, if n + m − l − j = 2q,

(11)
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where Jα,m =
∫

xα+2m−1Kα(bx)dx is evaluated in Appendix
II. Hence, using this, we obtain

Iα,m =
2m−1(m − 1)!

bm

∫ +∞

1

xk−1Kk(bx)dx +
m−1∑
l=1

2l−1

bl

× (m − l + 1)l−1

∫ +∞

1

xα+2m−l−1Kα+l(bx)dx︸ ︷︷ ︸
−Jα+l,m−l(1)

(16)

=
2m−1(m − 1)!

bm
Ik +

m−1∑
l=1

2l−1(m − l + 1)l−1

bl

×
m−l∑
j=1

2j−1(m − l − j + 1)j−1

bj
Kα+l+j(b), (17)

where Ik =
∫ +∞
1

xk−1Kk(bx)dx. Depending on the value of
k, we will distinguish three cases: arbitrary k values, integer
values of k, and k equal to an integer plus one half.

1) Capacity for arbitrary k: Using [14, Eq.(6.592.4)] and
some simplifications, Ik will be written in terms of the Meijer
G-function as follows

Ik = 2k−2b−kG3,0
1,3

(
b2

4

∣∣∣∣ 1
0, k, 0

)
, (18)

where, in the last equality, we have used [16,
Eq.(07.34.16.0001.01)]. This last formula is valid for
any value of k. However, we will see in the next section
that, for some specific values of k, it is possible to obtain
closed-form expressions in terms of more conventional
functions.

2) Capacity for integer values of k: We evaluate Ik by
using the following recursion formula:

Kk(bx) = Kk−2(bx) + 2
(k − 1)

bx
Kk−1(bx). (19)

By multiplying the last equation by xk−1 and integrating, we
obtain:

Ik =
∫ +∞

1

xk−1Kk−2(bx)dx + 2
(k − 1)

b
Ik−1 (20)

=
Kk−1(b)

b
+ 2

(k − 1)
b

Ik−1. (21)

Iterating on this equation and using the fact that
∫

K1(x)dx =
−K0(x), we obtain

Ik = (k − 1)!
k−1∑
j=0

1
j!

(
2
b

)k−1−j
Kj(b)

b
. (22)

3) Capacity when k is equal to an integer plus one-half:
Assume now that there is an integer n such that k = n + 1

2 .
By injecting (6) in Ik, we obtain the following closed-form
expression:

Ik =
√

π

2b

1
bn

n∑
l=0

Γ(n + 1 + l)
Γ(n + 1 − l)Γ(l + 1)2l

Γ(n − l, b), (23)

where Γ(·, ·) is the incomplete gamma function.

B. Outage probability

Using the expression of Jα,m developed in Appendix II, the
outage probability4 can be written as

Pout = 1 − bβ+1
∑m

l=1
2l−1(m−l+1)l−1Kα+l(b)

bl

2β−1Γ(m)Γ(k)
. (24)

C. Optimal cutoff

The optimal cutoff satisfies [10]∫ +∞

γ0

(
1
γ0

− 1
γ

)
pγ(γ)dγ = 1, (25)

after some manipulations it is found that γ0 is a solution of
the following equation

bβ+1

2β−1Γ(m)Γ(k)
(−Jα,m(1) + Jα,m−1(1)) − γ0 = 0. (26)

For m ≥ 2, Jα,m−1(1) is computed using (40), and, for m =
1, we have that Jα,0(1) = Iα.

IV. CHANNEL INVERSION WITH FIXED RATE

A. Total channel inversion

The capacity for channel inversion with fixed rate (cifr) is,
as shown in [10],

< C >cifr= log2

(
1 +

2β−1Γ(m)Γ(k)

aβ+1
∫ +∞
0

xβ−2Kα(ax)dx

)
. (27)

We can show that, if m ≤ 3
2 (i.e., m = 1 since we consider

only integer values), the integral diverges, and, therefore the
capacity for channel inversion with fixed rate is zero. Now, if
m ≥ 2, we have that5

< C >cifr=
1

ln(2)
ln

(
1 − 2β−1Γ(m)Γ(k)

aβ+1 limx→0 Jα,m−1(x)

)
. (28)

Using (37), we obtain the following capacity expression

< C >cifr=
1

ln(2)
ln

(
1 + γ

(m − 1)(k − 1)
mk

)
. (29)

Note that when m and k tend to infinity, we approach the
capacity of the AWGN channel.

B. Truncated channel inversion

The capacity of truncated channel inversion with fixed rate
(tcifr) is given by [10]

< C >tcifr= log2

(
1 − 2β−1Γ(m)Γ(k)γ0

bβ+1Jα,m−1(1)

)
(1 − Pout). (30)

For m ≥ 2, Jα,m−1(1) is computed using (40), and, for m =
1, we have Jα,0(1) = Iα.

4The cumulative distribution function (CDF) of a generalized-K random
variable (and a fortiori the outage probability) was given in [7] in terms of
the hypergeometric function. However, the provided CDF can not be used if
α is an integer.

5Here Jα,m−1(x) refers to the same function as in (40), but we replace b
by a.
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V. NUMERICAL RESULTS

The following analysis is conducted in two different shad-
owing scenarios that correspond to Loo’s model (refer to [3]
and the references therein), namely, infrequent light shadowing
and frequent heavy shadowing. The corresponding standard
deviations σ of the log-normal shadowing are equal, respec-
tively, to 0.115 and to 0.806. By a moment matching technique
[8], the parameter k of the generalized-K distribution can be
linked to σ as k = 1

eσ2−1
, which translates therefore to the

following values for k: 75.1155 and 1.0931. Throughout our
simulations, the parameter m is arbitrarily set to 2 and the
diversity order M for MRC was set to 4. The performance in
a Nakagami-m channel [13] with m = 2 is also provided as
a reference.

Figs. 1, 2 and 3 show the capacity of the different policies as
well as the outage probability. Note the concordance between
the capacity given by the theoretical formulas and the one ob-
tained by computer simulations. As expected, the performance
deteriorates as the shadowing becomes more pronounced and
the results in the light shadowing conditions are almost the
same as in the Nakagami-m channel. Fig. 1 shows also that,
compared to optimal power and rate adaptation, transmission
with optimal rate adaptation suffers capacity penalty at low
SNR only. However, as γ increases, the two policies will
provide the same capacity. In the light shadowing conditions,
as illustrated in Fig. 2, this comparison holds also for trun-
cated channel inversion and total channel inversion. However,
for heavy shadowing, total channel inversion exhibits large
capacity loss.

VI. CONCLUSION

In this paper we have presented several results for the
capacity of generalized-K fading channels. More specifically,
we have obtained closed-form expressions for the capacity of
three adaptive schemes, namely, i) optimal rate adaptation with
constant power, ii) optimal rate and power adaptation and iii)
channel inversion with fixed rate. Comparisons with numerical
simulations showed the accuracy of our proposed formulas.

APPENDIX I
EVALUATION OF Aα,m

Relying on partial integration and using [14, Eq. (2.732)]6∫
x2n+1 ln(1 + x2)dx=

1
2n + 2

(
(x2n+2 + (−1)n) ln(1 + x2)

+
n+1∑
l=1

(−1)n−l

l
x2l

)
, (31)

6There is a typo in Eq.(2.732): 1
2n+1

should be replaced by 1
2n+2

.

as well as the fact that dxνKν(ax)
dx = −axνKν−1(ax), we

prove that Aα,m satisfies the following recursion formula:

Aα,m =
2(m − 1)

a
Aα+1,m−1 + (−1)m−1Aα,1

+
m−1∑
l=1

(−1)m−2−l

l
lim
x→0

Jα,l+1(x), (32)

where we have used the fact that∫ +∞

0

x2l+α+1Kα(ax)dx = − lim
x→0

Jα,l+1(x), (33)

and Jα,l(x) is derived in the next appendix. Iterating over this
equation, we obtain that

Aα,m=
m∑

j=1

(
2
a

)j−1

(−1)m−j(m − j + 1)j−1Aα+j−1,1+
m−1∑
j=1

(
2
a

)j−1

(m − j + 1)j−1

m−j∑
l=1

(−1)m−j−1−l limx→0 Jα+j−1,l+1(x)
l

. (34)

Using partial integration along the fact that∫
uζ+1Kζ(au)du = −uζ+1Kζ+1(au)/a, we obtain that

Aζ,1 is given by:

Aζ,1 =
2
a

∫ +∞

0

xζ+2

1 + x2
Kζ+1(ax)dx. (35)

Using [14, Eq.(6.565.7)], we obtain the following closed-form
expression for Aζ,1:

Aζ,1 = 2ζ+2Γ(ζ + 2)
S−2−ζ,ζ+1(a)

a
, (36)

where Sµ,ν(.) is the Lommel function.
Using the fact that Kt(x) ∼

x→0

Γ(t)
2

(
2
x

)t
along with the result

of Appendix II, we prove that

lim
x→0

Jα+j−1,l+1(x) = −Γ(α + l + j)22l+α+j−1l!
a2l+1+α+j

. (37)

Finally, Aα,m will be given by (38) at the bottom of this page.

APPENDIX II
EVALUATION OF Jξ,p

Let Jξ,p(x) =
∫

xξ+2p−1Kξ(bx)dx. Using partial integra-

tion along the fact that
∫

xξ+1Kξ(bx)dx = −xξ+1Kξ+1(bx)
b ,

we obtain

Jξ,p(x) =
2p − 2

b
Jξ+1,p−1(x) − xξ+2p−1Kξ+1(bx)

b
. (39)

Iterating on this equation and using the fact that
Jξ+p−1,1(x) = −xξ+pKξ+p(bx)

b , we obtain

Jξ,p(x) = −
p∑

l=1

2l−1(p − l + 1)l−1

bl
xξ+2p−lKξ+l(bx). (40)

Aα,m =
m∑

j=1

(
2
a

)j−1

(−1)m−j(m − j + 1)j−12α+j+1Γ(α + j + 1)
S−1−α−j,α+j(a)

a

−
m−1∑
j=1

(
2
a

)j−1

(m − j + 1)j−1

m−j∑
l=1

(−1)m−j−1−lΓ(α + l + j)22l+α+j−1(l − 1)!
a2l+1+α+j

. (38)
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policies versus SNR in infrequent light shadowing (k = 75.1155) and
frequent heavy shadowing (k = 1.0931) environments.
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Fig. 3. Outage probability for γ0 = 5 dB in infrequent light shadowing
(k = 75.1155) and frequent heavy shadowing (k = 1.0931) environments.
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