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ABSTRACT

In this contribution, we adopt a novel and simple narrow-
band approach to blind separation of mutually indepen-
dent and temporally i.i.d. sources in convolutive MIMO
mixtures. After remodelling the observation at the sen-
sor array as an instantaneous mixture where the delayed
replicas of the desired signals from multipath propagation
are seen as separate sources independent of each other,
we estimate them all in an analysis step by a conventional
narrowband blind source separation (BSS) technique. In
a synthesis step, we match the delayed replicas of each
source based on cross-correlation then combine them af-
ter proper time & phase alignments and weighting. In the
process, this multipath matching and combining proce-
dure identifies the convolutive MIMO channel and is able
to provide accurate expressions for direct blind deconvo-
lution (BD) equalizers. Simulations support the efficiency
of the new narrowband approach to BD.

1. INTRODUCTION

BSS has gained increasing researchers’ interest over the
last few years. This fact is due to the inherent goal of
the BSS which consists in retrieving unknown sources by
processing their mixtures only. Commonly, instantaneous
mixtures are considered [1, 2]. However, this assumption
is inconceivable in several practical applications. In wide-
band wireless communications for instance, the transmit-
ted signals reach the receiver with several delays gener-
ated by the scatterers around the communication terminals
[3]. In such contexts, the channel is generally modelled
as a finite impulse response (FIR) filter and the original
sources are recovered through BD.

The case of spatially independent sources with tem-
porally i.i.d. sequences has been recently investigated in
several works [4, 5, 6, 7]. In [6], Inouye proposed new
BD criteria extending the single convolutive channel case
investigated by Shalvi and Weinstein in [8]. In [7], Amari
et al. proposed a set of online algorithms based on the so-
called natural gradient. However, online algorithms gen-
erally exhibit slow convergence rate. Fortunately, some
batch algorithms have been shown to be able to achieve
high accuracy even with a limited number of snapshots
[5]. Another interesting work has been recently published
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in [9]. Therein, Diamantaras at al. considered a less re-
strictive case of temporally white sources but with at least
as many sensors as all signal replicas. The authors pro-
pose a new procedure based on a “filter deflation”. By per-
forming successive subspace projections, the general BD
problem is transformed into an instantaneous BSS prob-
lem. Unfortunately, these projections “kill” the multipath
components instead of taking advantage of the informa-
tion contained therein to better estimate the sources and
improve the quality of service in radiocommunication ap-
plications for instance.

In this paper, we propose a two-stage technique to per-
form the BD of spatially independent sources with tempo-
rally i.i.d. sequences. First, we take advantage of the spa-
tial independence and the temporal i.i.d property of the
sources to blindly estimate all the signal replicas using
an instantaneous BSS algorithm. Second, we match the
resulting replicas and combine them after proper time &
phase alignments and weighting to improve source recon-
struction. Simulations validate the efficiency of the new
technique.

2. DATA MODEL AND ASSUMPTIONS

We consider M temporally i.i.d. and mutually indepen-
dent sources sm for m = 1, . . . , M , received by an ar-
ray of N sensors after propagation through M multipath
vector channels quasi-static over T -sample durations and
characterized each by Lm paths for m = 1, . . . , M , and a
maximum delay spread τmax. The N -dimensional wide-
band observation vector resulting from this MIMO con-
volutive mixture can be written as follows at discrete-time
sample index t for t = 1, . . . , T :

x(t) =
M∑

m=1

bm(t)⊗ sm(t) + n(t) (1)

=
M∑

m=1

τmax−1∑

l=0

bm(l) sm(k − l) + n(t) ,

where ⊗ denotes convolution, bm(t) is the N -
dimensional channel vector of the mth source and n(t)
is an N -dimensional additive white Gaussian noise vector
independent of all sources sm for m = 1, . . . ,M .

Accounting for the fact that each channel response
vector bm(t), for m = 1, . . . ,M , has Lm multipath
components with path delays τm,1, . . . , τm,p, . . . , τm,Lm

- i.e., we have bm(l = τm,p) = bm,p (i.e., for l ∈
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{τm,1, . . . , τm,p, . . . , τm,Lm
}) and 0 otherwise when l

ranges from 0 to τmax−1 - we can rewrite the observa-
tion vector as follows:

x(t) =
M∑

m=1

Lm∑
p=1

bm,p sm(k − τm,p) + n(t) , (2)

where τm,p denotes the pth propagation path delay of the
mth source to the array of sensors. Without loss of gener-
ality, we assume τm,1 = 0 for m = 1, . . . , M .

We define the total number of multipath components
over all sources as:

K =
M∑

m=1

Lm . (3)

As it will become obvious from the following develop-
ments in Sec. 3.2, we require, similarly to [9], the follow-
ing condition:

K ≤ N ; (4)

meaning that the total number of multipath components
over all sources must not exceed the observation’s dimen-
sion. In practical situations where the number of sen-
sors is limited, the observation’s dimension N can be in-
creased beyond the antenna-array’s size by oversampling
[9]. Without loss of generality, we assume here for sim-
plicity the case where N is equal to the number of sensors
(i.e., no oversampling).

3. PROPOSED BLIND DECONVOLUTION
TECHNIQUE

Based on narrowband remodelling of the data observation
model, we estimate in an analysis step all multipath signal
components regardless of the sources they replicate using
conventional instantaneous BSS techniques. In a synthesis
step, we match all the multipath replicas of each source
and combine them after proper time & phase alignments
and weighting.

3.1. Narrowband Remodelling

Let us define the two single- and double-index sets with
same cardinality K as I1 = {1, . . . ,K} and I2 =
{(1, 1), . . . , (1, L1), . . . , (M, 1), . . . , (M, LM )}, respec-
tively. Accordingly, with one-to-one notation mapping
from one set to the other (i.e., k ∈ I1 ↔ (m, p) ∈ I2), we
define bk = bm,p and sk(t) = sm(t − τm,p). We hence
rewrite the observation model in (2) as follows:

x(t) =
K∑

k=1

bk sk(t) + n(t) = B s(t) + n(t) , (5)

where B = [b1, . . . ,bk, . . . ,bK ] is a column-wise
full rank N × K propagation channel matrix over
all multipath components and sources and s(t) =
[s1(t), . . . , sk(t), . . . , sK(t)]T is a K × 1-dimensional
vector of desired signal replicas over all multipath com-
ponents and sources. Since the M desired sources sm for
m = 1, . . . , M are mutually independent and each i.i.d.
in time, the K desired signal replicas sk for k = 1, . . . , K
are mutually independent variables (i.e., when taken at the
sample index t).

1. Initialization
1.1 define the total set of indices Î1 = {1, . . . , K̂}
1.2 set m = 0
1.3 define the set of remaining indices Ī1(0) = Î1 af-
ter assignment of multipath indices to previous source

2. Multipath Matching
2.1 do the following while I1(m) 6= ∅:

2.1.1 set m = m + 1
2.1.2 for the mth source define:
• im,1 as first index available in I1(m− 1)
• the set of multipath indexes Î1(m) = {im,1}
• the set of multipath delays D̂(m) = {0}
• the set of multipath ambiguities Â(m) = {1}

2.1.3 for k ∈ I1(m− 1)\{im,1}
• for τ ∈ T = {−τmax, . . . , τmax}

calculate the cross-correlation ρim,1,k(τ)
between ŝim,1

(t) and ŝk(t− τ)
• define ρim,1,k = ρim,1,k(τ) such that

τ = arg max
τ∈T

|ρim,1,k(τ)|2
• do the following if |ρim,1,k|2 > ε2min

B Î1(m) = Î1(m) ∪ {k}
B D̂(m) = D̂(m) ∪ {τ}
B Â(m)=Â(m) ∪

{
a= ρim,1,k

|ρim,1,k|

}

2.1.4 estimate the number of multipaths for mth
source as L̂m = Card[Î1(m)]
2.1.5 adopt accordingly the following notation:
• Î1(m) = {im,1, . . . , im,L̂m

}
• D̂(m) = {τ̂m,1, . . . , τ̂m,L̂m

}
• Â(m) = {âm,1, . . . , âm,L̂m

}
2.1.6 define I1(m) = I1(m− 1)\Î1(m)

2.2 estimate the number of sources as M̂ = m
3. Multipath Combining

for m = 1, . . . , M̂

ŝm(t) =
L̂m∑
p=1

âm,p λ̂2
im,p

ŝim,p
(t + τ̂m,p − τ0)

Fig. 1. Main algorithmic steps of the proposed mulipath
matching and combining procedure.

The data observation model reformulated in (5) is
now typically of a narrowband MIMO mixture1. With-
out loss of generality, we assume that all sources sk for
k = 1, . . . ,K have the same unit power and transfer all
normalization factors into the norms of bk, respectively.

3.2. Analysis: Conventional Narrowband BSS

As outlined previously, many BSS algorithms are avail-
able in the literature to handle the problem of extracting
the source vector s(t) out of an observation stemming
from instantaneous MIMO mixtures such as x(t) of (5).
Here we exploit the algorithm in [1, 2] for its great effi-
ciency and suitability.

1Immediate application of numerous narrowband techniques such as
high-resolution source localization methods over convolutive mixtures
become ad hoc with the reformulated data model in (5).



After estimation of the signal subspace rank which co-
incides with the estimated number of sources K̂ if K ≤ N
[hence the condition in (4)] and projection of x(t) over the
signal subspace, the algorithm in [1] provides an estimate
of B̂ within a permutation matrix and complex ambigui-
ties over columns that have little impact on the proposed
approach as it will become clear in the following subsec-
tion. From B̂, we form the zero-forcing (ZF) detector (al-
ternative detectors such as MMSE could be applied in-
stead) given by:

W = B̂
(
B̂

H
B̂

)−1

, (6)

and hence estimate the source vector as follows:

ŝ(t) = WHx(t) . (7)

Before we explain the proposed multipath matching and
combining procedure in the following subsection, we de-
fine the multipath power used there as follows for k =
1, . . . , K̂:

λ̂2
k = ‖b̂k‖2 . (8)

3.3. Synthesis: Multipath Matching and Combining

The proposed multipath matching and combining proce-
dure is summarized in Fig. 1. In the matching step, we
cluster together the indices k ∈ Î1 = {1, . . . , K̂} (see
step 1.1) of the multipath signal components replicating
the same source based on cross-correlation.

We proceed sequentially with one source at a time.
Let us assume that we have already assigned indices up
to the (m− 1)th source and that the set of indices specif-
ically allocated to the (m − 1)th source is referred to as
Î1(m − 1). Then I1(m) = Î1\ ∪m−1

q=1 Î1(m − 1) (see
steps 1.3 and 2.1.6) designates the remaining indices (i.e.,
not assigned yet in Î1). As long as this set is not empty
(see step 2.1), there are more sources to extract and mul-
tipath components to which they must be matched. In this
case, we move on to matching the multipath components
of the mth source (see steps 1.2 and 2.1.1).

Let us assign sim,1 where im,1 designates the first in-
dex available in I1(m) as the first delayed replica of the
mth source. As a reference signal, it has an ambiguity of 1
and a delay of 0 when cross-correlated with itself (see step
2.1.2). However, with the other remaining components
not assigned yet (see step 2.1.3), it has a cross-correlation
function ρim,1,k(τ) for τ ∈ T = {−τmax, . . . , τmax}
where τmax is the maximum delay spread in sample du-
rations. Let us define τ as the value of the time delay
τ ∈ T that maximizes the cross-correlation power and
ρim,1,k = ρim,1,k(τ) as the value of the cross-correlation
function at that time delay (see step 2.1.3). If |ρim,1,k|2
exceeds a minimum cross-correlation power threshold for
multipath matching, then the kth signal component is as-
signed as a delayed replica of the mth source. Hence the
set of indices, delays and ambiguities of the mth source
Î1(m), D̂(m) and Â(m) are augmented (see step 2.1.3),
respectively, with {im,1}, {τ} and a = ρim,1,k/|ρim,1,k|.

Once all remaining indices in I1(m) are processed, an
estimate of the number of multipaths for the mth source
can be provided by the equal cardinality of either set, e.g.,
L̂m = Card[Î1(m)]. This allows moving on to matching
the components of the next source, etc. Once all indices in
I1(m) are assigned [i.e., I1(m) = ∅] thereby terminating
the multipath matching step, the last incremented value of
m provides an estimate of the number of sources M̂ (see
step 2.2).

In a final synthesis step (see step 3), the source vec-
tor estimate ŝk in (7) and the multipath power estimates
λ̂2

k in (8) for k = 1, . . . , K̂, along with the sets of in-
dices, delays and ambiguities Î1(m), D̂(m), and Â(m)
for m = 1, . . . , M̂ allow for efficient reconstruction of
the original sources within complex ambiguities by effi-
ciently combining their aligned replicas. For simplicity,
we recur in step 3 to maximum ratio combining (MRC)
and introduce an arbitrary delay τ0 > τmax for causal pro-
cessing.

Coming back to the original convolutive data model
of (1), we can now reconstruct the equivalent equaliz-
ers which directly implement BD as follows for m =
1, . . . , M̂ :

wm(t) =
L̂m∑
p=1

âm,p λ̂2
im,p

wim,p
δ(t + τ̂m,p − τ0) , (9)

where wk is the kth column of W in (6). We hence
rewrite step 3 as follows for m = 1, . . . , M̂ :

ŝm(t)=wH
m(t)⊗ x(t)

=
M∑

m′=1

[
wH

m(t)⊗bm′(t)
]⊗sm′(t)+wH

m(t)⊗n(t)

=
M∑

m′=1

zm,m′(t)⊗ sm′(t) + n′m(t) , (10)

where zm,m′(t) denotes the time response of the mth
equalizer to the propagation channel of the m′th source
and n′m(t) is the output noise of the mth equalizer. Plots
of zm,m′(t) will illustrate the performance of BD in the
following simulations section.

4. SIMULATION RESULTS

We consider two i.i.d. and mutually independent BPSK
sources (i.e., M = 2) propagating each through three-path
channels (i.e., Lm = L = 3) to an array of six sensors
(i.e., N = K = M ×N = 6). Without loss of generality,
the delays for both sources are fixed to 0, 1, and 2. We
hence set the arbitrary delay for causal processing to τ0 =
3 (see Sec. 3.3). Statistics are calculated over blocks of
T = 103 snapshots [1] (see Sec. 3.2). We set the power
threshold to ε2min = 0.2 (see Sec. 3.3). The randomly-
generated real-valued2 channel taps are given below:

[b1,1 b1,2 b1,3] =




−0.5533 −0.0263 −0.5241
−0.1943 +0.8188 −0.0229
−0.0730 +1.5648 +1.1664
−0.5344 +0.4845 −0.2880
−0.0615 +0.0868 −0.5717
−0.8864 −1.1519 +0.3011


,

2For illustration purposes, we considered real-valued signals only.
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Fig. 2. Time response zm,m′(t) of the mth equalizer to the
propagation channel of the m′th source [see (10)].
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[b2,1 b2,2 b2,3] =




−0.1539 +0.7615 −0.0048
+0.8548 +2.5766 −1.9293
+1.0872 +1.3200 +0.7305
−1.0818 −0.4889 −0.9597
−0.1148 −0.3357 +0.2281
+1.3835 −0.3027 −1.5651


.

In Fig. 2, we plot zm,m′(t) in (10) at an SNR of 20
dB to assess the ability of the proposed wideband BSS al-
gorithm to separate the sources. Obviously, the proposed
algorithm is able to implement BD very accurately within
a source permutation. The response of the two equalizers
to one source is a perfect time delay at t = τ0 and a perfect
null to the other and vice-versa, respectively.

To further illustrate the efficiency of the proposed al-
gorithm, we compare its performance with the recent “fil-
ter deflation” algorithm proposed in [9] where all the taps
but one are “killed” after successive cancelling subspace
projections. To the best of our knowledge, this is the only
technique that came closest to exploring a narrowband ap-
proach to BD, under the same condition in (4) with how-
ever a very different concept. Hence its choice as a bench-
mark. As a performance index, we measure the bit error
rate (BER) over 102 Monte-Carlo runs for the T snap-
shots. In contrast to the proposed approach, we assume
for the “filter deflation” algorithm that the length of the

channel response is known.
In Fig. 3, we plot the mean BER over both sources vs.

SNR achieved by both techniques over the same channels
given above. The proposed approach clearly achieves very
significant SNR gains over the “filter deflation” technique.
This result can be expected since the proposed method
takes advantage of the diversity offered by the multipath
phenomenon after matching all the time-shifted versions
of the original signals and combining them to enhance the
signals’ reconstruction. In contrast, the filter deflation ap-
proach kills all the multipath components but one for ev-
ery source.

5. CONCLUSION

In this paper, we proposed a new and simple narrowband
approach to BD of mutually independent and temporally
i.i.d. sources. Based on narrowband remodelling of the
data observation model, we estimate in an analysis step
all multipath signal components regardless of the sources
they replicate using conventional BSS techniques. In a
synthesis step, we match all the multipath replicas of each
source and combine them after proper time & phase align-
ments and weighting. Simulations validate the efficiency
of this novel approach.
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