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ABSTRACT

An exhaustive investigation of the overdetermined blind
source separation (BSS) 3 × 2 problem is presented. We
establish a new relationship between the column vectors of
the channel matrix using second order statistics (SOS) only.
This relationship is then exploited to factorize the separat-
ing matrix into a whitening term, whose expression depends
on whether the observations are corrupted by noise or not,
and a 2 × 2 orthogonal matrix that can be determined us-
ing high order statistics (HOS). Simulation results demon-
strate that resorting to the new form of the whitening ma-
trix, mainly in the case of noisy ill-conditioned BSS, re-
sults in improved performance compared to the common
whitening-based techniques.

1. INTRODUCTION

Blind source separation has recently emerged as a wide field
of research with several practical applications including ra-
diocommunications, speech enhancement, biomedical sig-
nal processing, etc. This fact is due to the inherent goal of
the BSS which consists in retrieving unknown sources by
processing their mixtures only.

So far, numerous BSS algorithms have been proposed.
Besides, a well known trend has been to consider linear
mixtures of independent sources. Consequently, most of
the BSS problems have been solved by independent com-
ponent analysis (ICA) which exploits the independence of
the source signals to separate them. Except some works as
[1], the BSS-ICA schemes are generally based on the fourth
order (FO) cost functions. In these schemes, the complexity
of the BSS-ICA problem is greatly reduced by whitening
the observations using SOS.

In this paper, we aim at separating two sources using
three (or more sensors). This so called Two-Input Multiple-
Output (TIMO) data model is practical in several situations
[2] where it is convenient to have less antennas at the trans-
mitting end due to cost or space constraints or when antenna
selection is performed. Furthermore, it was shown in [3]

that such a model is desirable since it leads to simple yet
accurate solutions.

By focusing on the case of 3 x 2 BSS-ICA problem,
we derive a new relationship between the column vectors
of the channel matrix using SOS only. Interestingly, this
relationship leads, in a generic form, to the factorization
of the separating matrix into whitening and rotation terms.
Based on this factorization, we further elaborate new forms
for the whitening matrix which take into account the noise
level. We show by simulations that the proposed approach
enhances the BSS-ICA performance.

2. PROBLEM STATEMENT AND ASSUMPTIONS

We assume N stationary ergodic sources represented by
an N -dimensional vector s(t) = [s1(t) ... sN (t)]T and
mixed by an M × N (M ≥ N ) unknown channel ma-
trix A to yield an M -dimensional vector of observations
x(t) = [x1(t) ... xM (t)]T at time t:

x(t) = A s(t) + n(t), (1)

where n(t) = [n1(t) ... nM (t)]T is an unknown noise vec-
tor composed of M Gaussian i.i.d centered stationary sig-
nals with variance σ2

n. BSS consists in recovering the N
sources, by solely processing the observations x(t). In other
words, an unknown M×N separating matrix G is to be de-
termined such that the estimate vector y(t) defined by:

y(t) = G x(t) (2)

is as close as possible to the original source vector s(t). In
the sequel, we will omit the time index t for the sake of clar-
ity. We also stress that only the case of N = 2 and M = 3 is
considered in this work1. To have a tractable problem (de-
scribed by equations (1) and (2)), several assumptions are
commonly required: (H1) The source signals (si)i∈{1,...,N}
are mutually independent, with variances (σ2

i )i∈{1,...,N} re-
spectively, and optionally centered. Sources independence

1We are currently investigating the general case M × N .
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is the core hypothesis for most of BSS-ICA literature. (H2)
At most one of the sources is Gaussian. (H3) The channel
matrix A is full column rank. (H4) The noise and source
components are independent. (H5) The sources’ kurtoses
have the same sign.

3. CLASSICAL BSS-ICA WITH STANDARD
WHITENING

Except some works as in [1], the classical BSS-ICA ap-
proach consists in two main steps: whitening (or standard-
ization [3]) followed by a rotation of the observations such
that the resulting components are as independent as possi-
ble. While the first step can be performed based only on
the SOS, the identification of the independent components
is achieved by use of the HOS.

In the prewhitening-based algorithms such as [3, 4, 5],
a square root decomposition (such as Schur decomposition
or EVD) of the observed covariance matrix is usually em-
ployed to estimate the number of sources and standardize
the observations. To be specific, the covariance matrix of
the observations is given by:

Rx = E{xxH} = ARsAH + σ2
nI. (3)

Due to the scale indetermination [6], BSS-ICA problems are
generally solved for unit variance sources (i.e., Rs = I). If
the sources have different variances, the matrix:

B = AR1/2
s . (4)

is to be considered instead of A. In the sequel, we adopt
this notation for the channel matrix. The SVD of B yields:

B = VΛ1/2Vr, (5)

where V and Vr are unitary matrices and Λ is diagonal. If
we further note Rw = Rx − σ2

nI, equation (3) becomes:

Rw = VΛVH . (6)

The whitening matrix is given by:

W = Λ−1/2VH . (7)

Actually, in the particular case 3 × 2, a projection on the
signal subspace by taking the first two column vectors of
the matrix V corresponding to the two non-null eigenvalues
forming the diagonal of the 2×2 matrix Λ (the third line and
column which are null are eliminated) is also performed.

Notice, here, that the third dimension corresponding
to the noise subspace is employed to determine the noise
power only. In contrast, we will show in the following sec-
tion that this subspace can be exploited differently to yield

an explicit relationship between the channel vectors. The
2-dimensional vector of the whitened observations:

xw = Wx (8)

represents a rotated version of the original sources. In other
words, there exist a unitary matrix Q defined as:

Q =
(

cos(θ)ejφ sin(θ)e−jφ

− sin(θ) cos(θ)

)
(9)

where θ and φ are real valued, such that:

xw = Qs. (10)

Resorting to HOS of xw is inevitable since SOS are not
sufficient to determine the optimal rotation Q. Besides,
the particular case of two sources had been investigated in
[3, 4]. There, the maximization of the FO contrast function
led to analytical expressions for the optimal values of θ and
φ based on FO statistics.

Once the optimal rotation, Qopt, is determined, the
channel matrix is completely identified up to some complex
scale and permutation indeterminacies [6]:

B = VΛ1/2Qopt, (11)

In a noise-free situation, the separating matrix G is ex-
pressed as follows:

G = QH
optW, (12)

whereas for noisy mixtures, it is recommended to use
the matrix corresponding to minimum mean square error
(MMSE) to separate the sources once the channel matrix
is identified:

G = BHR−1
x . (13)

4. NEW APPROACH

In contrast to the standard method described in the previous
section, we further exploit the information contained in the
noise subspace to establish an explicit relationship between
the two column vectors of the channel matrix. This rela-
tionship will allow us to deduce two different expressions
for the so-called whitening matrix depending on the noise
level.

4.1. Explicit relationship between the channel vectors

Taking into account (H3), the covariance matrix, Rw =
BBH , is of rank 2 . Hence, its kernel is one dimensional.
We can verify that the vector v0 = [v01 v02 v03]T whose
entries satisfy the following system of equations:


v01 = b∗21b

∗
32 − b∗31b

∗
22

v02 = b∗31b
∗
12 − b∗11b

∗
32

v03 = b∗11b
∗
22 − b∗21b

∗
12

, (14)



where (bij)1≤i≤3, 1≤j≤2 are the entries of the channel ma-
trix B, spans this subspace [7]. Interestingly, we can also
check that the vector v = [v1 v2 v3]T having the following
entries: 


v1 = r12r23 − r13r22

v2 = r21r13 − r23r11

v3 = r11r22 − r12r21

, (15)

where rij = E{xix
∗
j} (∀ i, j ∈ {1, 2, 3}), spans this sub-

space too. Hence, there exists a complex valued constant
α �= 0 such that:

v0 = αv. (16)

Now combining equations (3), (14), and (16), we obtain the
following non-linear system of equations:




b∗11b
∗
22 − b∗21b

∗
12 = αv3 (L1)

b11b
∗
21 + b12b

∗
22 = r12 (L2)

b∗31b
∗
12 − b∗11b

∗
32 = αv2 (L3)

b11b
∗
31 + b12b

∗
32 = r13 (L4)

b∗21b
∗
32 − b∗31b

∗
22 = αv1 (L5)

b21b
∗
31 + b22b

∗
32 = r23 (L6)

. (17)

Performing the following operations on system (17) [7]:



L1 ← b21L1 − [b22L2]∗

L2 ← b22L1 + [b21L2]∗

L3 ← b11L3 − b∗12L4
L4 ← b12L3 + b∗11L4
L5 ← [b31L5]∗ − b32L6
L6 ← [b32L5]∗ + b31L6

, (18)

we transform the system (17) into the following linear sys-
tem of equations:

R b = 0, (19)

where

R =




−r∗31 0 r11 −αv2 0 0
r22 −r∗12 0 0 −αv3 0
0 r33 −r32 0 0 −αv1

α∗v∗
2 0 0 −r31 0 r11

0 α∗v∗
3 0 r22 −r12 0

0 0 α∗v∗
1 0 r33 −r∗32




and
b = [b∗11 b∗21 b∗31 b12 b22 b32]T .

In compact notations, equation (19) can be written as:

R =
(

C −αD
α∗D∗ C∗

)
(20)

b = [bH
1 bT

2 ]T . (21)

Vectors b1 and b2 are, respectively, the first and the second
column vectors of the channel matrix. On the other hand,
α �= 0 and B is of rank 2. Therefore, vi �= 0 ∀ i ∈ {1, 2, 3}

and D is full rank. Hence, we conclude that the vectors b1

and b2 are closely related by the following equations [7]:
{

b2 = 1
αD−1Cb∗

1

b1 = − 1
αD−1Cb∗

2
. (22)

By an appropriate use of the noise subspace, we were
able to establish an explicit relationship between the column
vectors of the channel matrix. To the best of our knowledge,
this new relationship is first identified in this work.

4.2. Parametrization

Using equation (22), it is easy to check that b1 and b2 are
the eigenvectors of the matrix

F = D−1CD−1∗C∗,

associated with the eigenvalue −|α|2 (of multiplicity 2).
The signal subspace, spanned by the two eigenvectors u1

and u2 of F associated with the double-multiplicity eigen-
value −|α|2, is now well defined using the noise subspace.
In other words, b1 and b2 are linear combinations of u1 and
u2: {

b1 = η∗
1u1 − η∗

2u2

b2 = η1u2 + η2u1
, (23)

where η1 and η2 are two unknown complex variables that
will be determined in the sequel. Note that only |α| can be
exactly computed by EVD of F. Therefore, b1 and b2 are
linked up to a phase indetermination in equation (22). To
find the unknowns η1 and η2, recall that:

‖b1‖2+‖b2‖2 = (|η1|2+|η2|2)(‖u1‖2+‖u2‖2) = tr{Rx}.
(24)

Thus, if we normalize u1 and u2 by
√

tr{Rx}
(‖u1‖2+‖u2‖2) , we

obtain: |η1|2 + |η2|2 = 1, (25)

and η1 and η2 can be expressed as:
{

η1 = cos(θ)ejφ1

η2 = sin(θ)ejφ2
, (26)

where φ1, φ2, and θ are real valued. Now, taking into ac-
count the fact that b1 and b2 are determined up to a phase
ambiguity, we eventually deduce the parametrized relation-
ship between these two vectors:

{
b1 = cos(θ)ejφu1 − sin(θ)u2

b2 = sin(θ)e−jφu1 + cos(θ)u2
, (27)

where θ and φ are parameters that can be determined using
HOS only. In a more compact representation, the matrix B
can be expressed as:

B = UQ, (28)

where U = [u1 u2] and Q is as defined in equation (9).



Based on the relationship established in equation (22)
and the appropriate parametrization in equation (27), we
find a generic factorization for the channel matrix similar,
in essence, to that given in equation (11): a 3 × 2 matrix
multiplied by a rotation. However, both first parts of B
in equations (11) and (28) are different since they emanate
from different methods.

4.3. Whitening matrix

Based on expression (28) for the channel matrix, we deduce
the conventional factorization of the separating matrix G
into a whitening term W and a rotation QH . To be specific,
G is expressed as:

G = QHW. (29)

Our goal now is to establish an optimal expression for W
that takes into account whether the observed mixtures are
corrupted by noise or not.

4.3.1. Noise-free mixtures

In the case of noise-free mixtures, the optimal separator G
is obviously the pseudo-inverse of the channel matrix corre-
sponding to the zero-forcing (ZF) criterion. Using equation
(28), we obtain:

W = U#. (30)

where (.)# stands for the pseudo-inverse operator.

4.3.2. Noisy mixtures

As mentioned previously, when the observed mixtures are
corrupted by noise, the matrix corresponding to the MMSE
criterion and given in equation (13) is the optimal source
separator. Hence, we obtain a new optimal expression for
the whitening matrix:

W = UHR−1
x . (31)

This new form takes into account the noise effect in re-
covering the independent components from the whitened
data in contrast to the conventional approach where the
whitening matrix is set without considering the noise level.
In other words, we exploit the MMSE criterion in both
stages of the BSS-ICA problem: firstly in identifying the
optimal rotation and secondly in separating the sources. We
will prove by the simulations that this new method improves
the BSS performance.

4.3.3. HOS-based resolution

The optimal rotation Q which is fully defined by the param-
eters θ and φ is found by resorting to HOS of the whitened
data. The closed-form solutions provided in [3, 4] can be
exploited to determine these parameters.

5. SIMULATION RESULTS

In order to prove the advantages of the proposed method,
we compare it with the classical BSS-ICA with standard
whitening described in section 3. We emphasize that our
comparison is limited to the effect of the SOS only. Con-
sequently, the second stage which consists in estimating the
rotation matrix by HOS is common for both of the compared
techniques. In the noise-free case, we found that the perfor-
mance of the proposed technique is similar to the standard
whitening-based one. Hence, we mainly focus our discus-
sions on the noisy-mixtures case.

As mentioned in section 4.3.2, by using the MMSE
criterion we obtained a new expression for the so-called
whitening matrix which leads to an improved performance
when employed to determine the optimal rotation matrix Q.
Once Q is determined, we use the MMSE criterion again to
separate the sources. We compare our approach to the stan-
dard one where the conventional whitening matrix given in
section 3 is used to whiten the observations and the MMSE
criterion is employed to separate the sources only.

It goes without saying that the ultimate goal of BSS is
to minimize the errors on the estimated sources. For in-
stance, the symbol error rate (SER) in communication sys-
tems is a very reliable performance criterion for BSS-ICA
techniques. We use 105 samples of two independent BPSK
sources to evaluate the SER in our simulations. However,
for all tested scenarios, we process the data in blocks of 500
samples each and estimate the required SOS and HOS to de-
termine the separating matrices for every block. SER results
are then averaged over all blocks. We particularly focus on
the case where the BSS problem is ill conditioned. In fact,

we consider that σ2
2

σ2
1
�= 1 (or equivalently the two channel

vectors have different amplitudes) and assess the effect on
the SER of the conditioning of the channel matrix A (with
normalized columns), defined as the highest to the lowest
(non-zero) singular values ratio. For better illustration of
the results, we perform an averaging over 100 realizations
of the channel matrix A for every conditioning.

In figure 1, we represent the variations of the SER ver-
sus SNR for both sources. Notice how the performance of
our approach becomes increasingly remarkable compared to
the standard method for the source s2. We clearly see that
increasing the conditioning of the channel matrix from 5 to
8 results in a loss of performance (in terms of the required
SNR at a given SER) for the standard whitening-based tech-

nique especially when the ratio σ2
2

σ2
1

= 10 dB, while the per-
formance of our approach are almost unaffected. For the
“weakest” source s1 our approach exhibits the same level
of performance as the conventional one.

It is also of interest to evaluate the variations of the re-
quired SNR with respect to the conditioning of the channel
matrix to achieve a fixed SER value. Figure 2 represents



the variations of the required SNR [dB] with respect to the
channel matrix conditioning to achieve a SER = 10−2 for
σ2
2

σ2
1

= 6 dB to extract s2. At low conditioning both ap-
proaches exhibit the same level of performance. Neverthe-
less, our new method performs much better than the stan-
dard one when the BSS problem becomes ill-conditioned.
The achieved gain in SNR can go up to 2 dB at 10−2 SER
only.
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Fig. 1. SER vs SNR for s2 and s1 for different values of σ2
2

σ2
1

and conditioning of A (cond(A)).

6. CONCLUSION

In this paper, a new relationship between the column vectors
of the channel matrix was elaborated to solve the 3×2 BSS-
ICA problem . To proceed, we fully exploited the informa-
tion provided by the SOS. Then, we reduced the complex-
ity of the problem in hands by an appropriate parametriza-
tion. We further exploited the optimal form of the sepa-
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Fig. 2. Required SNR versus cond(A) to achieve SER =
10−2 at σ2

2
σ2
1

= 6 dB.

rating matrix (ZF/MMSE of the channel matrix for noise-
free/noisy mixtures, respectively) to elaborate appropriate
expressions for the whitening matrix. Simulation results
proved the robustness of the proposed approach to solve the
ill-conditioned BSS problem with noisy mixtures. Although
we focused on the particular case of three observations in
this paper, the more general case (M > 3) can be easily in-
vestigated by selecting three antennas from M which trans-
forms it into 3x2 subproblems.
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