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Abstract— Non-data-aided (NDA) SNR estimation is consid-
ered for M-PSK transmission over additive white Gaussian noise
channels. An iterative SNR estimator is derived from an envelope-
based estimator. The performance of the proposed estimator is
compared to existing algorithms. Simulation results shown for
QPSK and 8-PSK demonstrate that the new estimator clearly
performs as well as the best SNR estimator in each SNR range.

I. INTRODUCTION

Various digital communication applications, such as power
control, bit error estimation, and turbo decoding, involve the
knowledge of the Signal-to-noise ratio (SNR). For optimal
performance, SNR estimation must be as accurate as possible.
Several SNR estimation techniques have been proposed for
AWGN channels. These estimators can be divided into two
classes. One class is for data-aided estimators which assume
the knowledge of the transmitted data, or that the transmitted
data can be reconstructed from the received data and used
by the estimator as if it was perfectly reconstructed. The
other class is for non-data-aided estimators. For this class
of estimators, the transmitted data remain unknown to the
receiver. A comparison of Data Aided (DA) and Non-data-
aided (NDA) estimators was performed in [1]. Although the
pilot data-aided estimators perform better, the main advantage
of the NDA estimators is their bandwidth efficiency due to the
elimination of training sets. In [1], as in many other studies,
only the case of coherent channels is studied and thus no phase
ambiguity is considered. In the case of incoherent channels,
contrary to other estimators, the NDA envelope-based estima-
tors are still operable without phase recovery. Hence, in this
paper, we consider only non-data-aided envelope-based SNR
estimators. For this class of estimators, several SNR estimation
algorithms have been investigated. In [4], the authors introduce
the Amplitude Moment (AM) estimator for PSK modulation
over AWGN channels. The AM estimator is based on the first
and the second absolute moments. Although this estimator
emerges as the best candidate at low SNR, it suffers from
a degradation in performances at high SNR values where
it is outperformed by the MsM, estimator [2], which is
based on the second and fourth moments. In [6], the authors
present a class of estimators for QAM constellations. For PSK
constellations, the method proposed in [6] can outperform the
M>M, method with appropriate parameter selection.
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In this paper, an iterative estimation method is presented
for M-PSK modulation over AWGN complex channels. The
new estimator outperforms other estimators in terms of NMSE
(normalized mean squared error) and, since it is an envelope-
based estimator, phase recovery is not needed.

Simulation results demonstrate that the new estimator ex-
hibits good performance over wider SNR ranges than other
existing algorithms. Simulation results shown for QPSK and
8-PSK, demonstrate that the new estimator clearly performs
as well as the best SNR estimator in each SNR range.

The paper is organized as follows. Section II introduces the
system model. The various SNR estimators under consider-
ation are described in Section III. In Section IV, we derive
a new envelope-based NDA estimator. In Section V, Monte
Carlo simulation results are provided for the new estimator
and compared with other methods. Section VI concludes the

paper.
II. SYSTEM MODEL

We consider MPSK modulation over frequency-flat fading
channels. Symbol-spaced samples at the matched filter output
are given by

Yn = Aej¢a7L + Wn, (D

where n = 1,2,...N is the time index in the observation
interval, y,, is the received signal, Aexp(j¢) is the channel
coefficient assumed complex and constant over the observation
interval, a,, is the transmitted MPSK signal and w,, is a
realization of a zero mean complex white Gaussian random
process of variance Ny = 202. The SNR of the received
symbol is given by:

A2 S
P=902 ™ No @
As mentioned above, we are currently interested in envelope-
based estimators, which do not assume the knowledge of
the channel phase. From our system model in (1), it can be
shown that the probability density function (PDF) for |y, | is
expressed as follows:
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where Iy() is the Bessel function of the first kind and of order
0. The first absolute moment of the Ricean variable |y, | is
given by [5]:

M,y = E(lyal) = (3/2:1;p), 4

where M(.; .;.) is the confluent hypergeometric function and
T" is the gamma function.
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III. EXISTING SNR ESTIMATION METHODS
A. The amplitude Moments Method

In [4], the amplitude moment (AM) estimator, an SNR
estimator using the first and second moments, is proposed.
Using eq. (4) and

=E{|yn|*} = S + No, ®)

leads to the following expression:
S/ M,
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from which S, the desired signal power, can be computed. Ny
is simply:

No =M, —S. )

In practice, the AM estimate p 4, is obtained by substituting
M; and M, in eq. (6) and (7) by sample average versions:

N 1 =N
1:NZ ®)
and
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For a determinate value of , using a lookup table, we obtain
an approximate estimate for ’s by interpolation (See Fig. 1).
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Fig. 1. §/Ms vs.M?2 /M>.

The major disadvantage of this method is that, due to the
finite dimension of the lookup table, the bias tends to increase
with the SNR. This effect is more pronounced with smaller
lookup table sizes.

B. The MoMy Method

In order to estimate the SNR, the MM, method [2] uses
eq. (5) and the fourth moment of |y, :

My = koS?* +4SNy + kN3, (10)

where k, = E{|an|*}/E{|a,|?}* and k, =
E{|w,|*}/B{|w,|?}?> are the kurtosis of the complex
signal and the complex noise. For MPSK signal over complex
AWGN channels we have k, = 1 and k,, = 2. Hence, (10)
simplifies to

My = S% + 4SNy + 2NZ. (11)

Combining eq. (5) and eq. (11), the MyMy estimator reduces
to:

2M3 — M,
My — \/2M2 — M,

The estimate pas, s, is obtained by substituting M, and Ms
in eq. (12) by the sample average defined in eq. (9) and:

PMoM, = (12)

n=N

My = N Z |yn|4

MyMy outperforms AM at hlgh SNR, nevertheless AM is
superior at low SNR.

(13)

C. The NDA envelope-based SNR estimation approach pre-
sented in [6]

For the sake of simplicity, we choose to refer to the NDA
envelope-based SNR estimation approach presented in [6] by
denoting it simply by the name “Gao method”. We present in
this section the Gao method applied to M-PSK signals.

Let us define the kth moment of |y, | as:

For PSK modulation, M) is the kth moment of a Ricean
variable:

My, = (20)2T (k/2+ 1) exp (—p) M

(14)

(k/2+1;15p),

(15)
We see from (15), that the moments depend on two unknown
parameters: the SNR, p, and the noise variance 202. Hence,
a moment-based SNR estimator requires estimates of at least
two different moments. Suppose that, for k # [, we define the
following functions of p:

fei(p)

which depend on p but not on o. Then we can construct
moment-based estimators for p, which are expressed as

M;,
e = fol | =2,
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where M), £ + ZnN:1 ly(n)|".

Although the analytical inversion of fj;(-) is often not
tractable, we can easily implement this estimator by a look-up
table. However, for k£ = 2 and [ = 4, the estimator yields
a closed-form solution which is actually equivalent to the
MsoMy. In [6], simulation results demonstrate that for PSK
modulation the optimum choice of k and [ is k =1 and | = 2,
and that the Gao SNR estimator with those parameters, p1 o,
can outperform the M,M, estimator. The lookup table that
would need to be used in employing the p; » estimator would
simply consist in a number of samples of the function fk_ ll

IV. ITERATIVE ENVELOPE-BASED ESTIMATOR

In the following, we will derive an NDA envelope-based
estimator using the first and second absolute moments with
an iterative bias compensation procedure.

An intuitive envelope-based SNR estimator is simply the
ratio of E{|y,|}? to the variance Var{|y,|}. In fact, E{|y,|}
will tend to A for large p:

lim Eflyn|} = 4, (18)
p—>00

and the variance of the absolute value Var{|y, |} will tend to
No:

lim Var{|y,|} = No. (19)
p—00
For large SNR values, p is approximated by:
. E{lynl}?
p= M (20)
Var{ |y}

This estimator is the same as the one proposed in [3] for
BPSK modulation over coherent channels. We can derive an
reduced bias version of this estimator for M-PSK modulation
over complex channels as follows:

M
2(My — M?)’

po = @1

On the other hand, this estimator still has a large bias (and
therefore a large NMSE). Indeed, from (4) it is easy to verify
that:

M, =S (F(3/2)‘”‘1’(\/I5’))M(3/2; l;p)) . Q)

In the estimator pg, M; used to estimate A is biased by the
factor F(S/Q)WM(S/Z 1;p). A fairly simple method to
reduce this bias is to use the estimator pg to evaluate the bias
factor, then compensate for it. We calculate the estimates A
and p by using the estimator expressed in (21). The bias is
then reduced by dividing M, by T'(3/2) 22=L2IM(3/2; 15 o),

giving a new estimate Ay
A
(1(3/2) =2l=222M(3/2; 1: o)

The new SNR estimator is then:

A = (23)
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Fig. 2. True SNR normalized mean squared error of the new estimator with
QPSK signals, N = 60.

_ Ay
My — (Ay)?

P1 24
The procedure can be repeated to provide an iterative SNR
estimate. Our iterative estimator is calculated using the
following algorithm.

Input yq,...,yn
Input I {number of iterations}

Initialization
calculate flo = Ml = % ZZ;V |Yn

calculate My = % ZZiiV |Yn|?
A2

calculate pg = m
0

For iteration k = 1..1

Ay = Ao/ (F(3/2)exp(;\/%;1)M(3/2; 1;[%-1))

pr = A2/ (Ms — A2)

End

Output p;

V. SIMULATION RESULTS AND DISCUSSION

Simulation results are provided for the new SNR estima-
tor. Specifically, QPSK and 8-PSK modulated signals over
complex AWGN channels are simulated. For comparison, we
provide also the performance of MsMy, the AM and Gao
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Fig. 3. Normalized bias of the new algorithm with QPSK signals, N = 60.
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Fig. 4. Normalized variance of the new estimator with QPSK signals, N = 60.

estimators. For both modulations we choose 120 bits i.e N=60
and N = 40 symbols for QPSK and 8-PSK, respectively. For
the AM estimator, a lookup table is needed. We used a grid
with spacing of 0.001 corresponding to a table size 1000. For
the Gao method, the size of the required table lookup size was
taken very large (more than 8000 entries, with SNR ranging
from lower than -76dB to 100dB in step of 0.02dB). We will
also use the classical CRB [1] as a reference.

First of all, we start by looking at the performance of
the new algorithm as a function of the number of iterations.
For the sake of simplicity, we will only consider QPSK
modulation. In Fig.2, we present the NMSE as a function
of the number of iterations at different SNR values. It is
immediately apparent from Fig. 2 that our algorithm can
provide good performance with a relatively small number
of iterations. A limited performance loss is observed as the
number of iterations increases above I = 15. Notice that for
each SNR value, we find an optimal number of iterations.
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Fig. 5. True SNR normalized mean squared error of the estimators with QPSK
signals, N = 60 and I = 20.
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Fig. 6. True SNR normalized mean squared error of the estimators with 8-PSK
signals, N = 40 and I = 20.

As we will see, there is a bias/variance tradeoff requiring an
optimal number of iterations for each SNR value.

In Fig. 3, we plot the normalized bias as a function of the
number of iterations. In terms of bias, it is observed that
our algorithm converges in less than 30 iterations for the
considered SNR values. As an example, at 0 dB the normalized
bias is reduced by about 10.

In Fig. 4, we exhibit the normalized variance for different
SNR values as a function of the number of iterations. We find
that the new algorithm reduces the bias at the expense of an
increase in variance. Hence, it yields to a bias-variance trade-
off.

Figs. 5 and 6 show the NMSE as a function of SNR for
the estimators with QPSK and 8-PSK signals over complex
AWGN channels with data length of N = 60 and N =
40, respectively. The number of iterations is set to 20. As
expected, the py estimator (initial condition of our recursive
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Fig. 7. Normalized bias of the estimators with QPSK signals, N = 60 and
I = 20.

algorithm) performs poorly. The MsM, estimator is better than
the estimator gy but it is outperformed by the AM estimator at
low SNR values. Notice here the degradation observed at high
SNR for the AM. The NMSE of the newly proposed estimator
is the smallest over the entire range of tested SNR values with
only I = 20 iterations. The performance of the new estimator
is similar to the Gao’s performance without requiring a lookup
table.
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Fig. 8. Normalized bias of the estimators with 8-PSK signals, N = 40 and
I = 20.

Figs. 7 and 8 compare the bias of the estimators under study.
At low SNR, the bias of the AM estimator and Gao estimator is
relatively small compared the one obtained with our algorithm.
However, as seen in Figs. 5 and 6, the NMSE of the new
estimator is still the smallest since the AM and Gao estimators
exhibit a higher variance at low SNR. It can also be shown
that with a higher number of iterations we can reduce the bias
to reach the performances of the AM estimator. In contrast to

our algorithm’s performance at high SNR, the bias of the AM
estimator increases dramatically for SNR > 15dB. For AM
and Gao estimators, the bias is determined by the lookup-
table’s size and the interpolation method, while for the new
estimator is mainly determined by the number of iterations.

VI. CONCLUSION

In this paper we have derived a new SNR estimator for M-
PSK signals. The algorithm is an estimator with iterative bias
compensation. Simulations have shown that the new estimator
exhibits performance gains over other previously proposed
techniques for all values of SNR considered.
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