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Abstract|Adaptive array-receivers for CDMA signif-
icantly increase performance and are expected to play
a key role in future CDMA systems. In this contri-
bution we compare the uplink performance of pilot-
assisted and blind CDMA array-receivers adaptive to
the Rayleigh fading conditions. We exploit these re-
sults to minimize identi�cation errors and optimize ca-
pacity of array-receivers at di�erent qualities of service
and fading rates. Optimal pilot-to-data power ratios are
suggested for pilot-assisted array-receivers. Evaluation
results suggest power-ratios increasing with higher fad-
ing rates from 15 to 35%. Results also suggest that
blind array-receivers perform better than pilot-assisted
versions, especially at higher fading rates and smaller
BER values. The advantage of blind array-receivers
also increases with an increase in the number of anten-
nas.

I. Introduction

To increase the uplink capacity of wideband appli-
cations in wireless CDMA [1], future standards are ex-
pected to implement coherent detection with a pilot.
This pilot should allow the identi�cation of the chan-
nel and the estimation of its phase o�set in particular.
Many works previously analyzed the performance of
pilot-assisted systems in Rayleigh fading channels [2]-
[5]. Study of the e�ects of channel estimation errors
on performance [3],[4],[6] is of particular interest in
pilot-assisted schemes. It allows optimization of per-
formance [2],[4],[5] and the allocation of an optimal
pilot-to-data power ratio in particular [4],[5].
We extend previous works and consider the analysis

and evaluation of pilot-assisted CDMA array-receivers
adaptive to Rayleigh fading. We also include the case
of blind array-receivers for comparative evaluation. In-
deed, array-receivers for CDMA signi�cantly increase
performance [7] and are expected to play a key role
in future CDMA systems. We �rst perform a per-
formance and convergence analysis of channel identi-
�cation by adaptive array-receivers and validate it by
simulations. This analysis takes into account adap-
tation of array-receivers to the time-variations of the
Rayleigh channel at di�erent fading rates. It allows
the selection of an optimal adaptation step-size for the
minimization of identi�cation errors at di�erent oper-
ating conditions of noise and fading rate. These results
lead to a simple method for capacity computation to
evaluate and optimize pilot-assisted and blind adap-
tive array-receivers at di�erent qualities of service and
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fading rates. Optimal pilot-to-data power ratios may
be readily selected for pilot-assisted array-receivers.
Evaluation results suggest that blind array-receivers
perform better than pilot-assisted versions at higher
fading rates and qualities of service.

II. Formulation and Background

We denote by M the number of the uplink receiv-
ing antennas at the base-station and consider a mul-
tipath Rayleigh fading environment with a number of
paths P and a Doppler frequency fD. The data is
BPSK modulated at the rate 1=Ts where Ts is the sym-
bol duration. After despreading, we obtain the post-
correlation model (PCM) [8],[9] of the received signals
over the M � P spatio-temporal diversity branches in
the observation vector:

Z
�n

= H
�n
sn +N

�n
= H

�n
 nbn +N

�n
; (1)

where sn =  nbn is the signal component, bn is the
BPSK data sequence and  2

n is the total received
power. For sake of simplicity, we assume a perfect
power control situation (i.e., the total received power
is  2

n =  2) and relegate the case of imperfect power
control to a future study. H

�n
is the M � P spatio-

temporal Rayleigh fading channel vector normalized
to
p
M (see [8],[9]). Finally, N

�n
is a white Gaussian

interference vector with mean zero and variance �2N
after despreading. The resulting input SNR after de-
spreading is SNRin =  2=�2N per antenna element.

For analysis and evaluation of adaptive array-
receivers, we select the spatio-temporal array-receiver
(STAR) [8] as a study-case for its simplicity and per-
formance e�ciency. This array-receiver is also repre-
sentative of a wider class of array-receivers relying on
principal component analysis [7]. In addition, it allows
implementation of di�erent combining and detection
schemes.

STAR �rst performs simple signal component ex-
traction by spatio-temporal maximum ratio-combining
(MRC):

ŝn = Real

(
Ĥ
�

H

n Z�n
M

)
; (2)

then feeds this result back in a decision feedback iden-
ti�cation (DFI) scheme to arrive at a blind channel



identi�cation procedure (see details in [8]):

Ĥ
�n+1

= Ĥ
�n

+ �
�
Z
�n

� Ĥ
�n
ŝn

�
ŝn; (3)

where Ĥ
�n

is the adaptive channel estimate and � is
the adaptation step-size.
The simple DFI scheme of Eqs. (2) and (3) allows

coherent detection of the signal component within a
sign ambiguity [8] and requires di�erential decoding of
DBPSK modulated data. If we drop the real part in
(2), we can simulate techniques that implement dif-
ferential demodulation with a loss in capacity perfor-
mance by almost a factor 2 [8]. However, such methods
will not be pursued here. Optimum combining could
be used instead of MRC to determine the feedback
signal [13], but this version will not be analyzed here
for the sake of simplicity. Finally, if a known reference
signal sn such as a pilot is used for feedback, we obtain
a well known least mean square (LMS) gradient-type
[11] tracking equation as the pilot-channel-assisted ver-
sion of STAR.
Using classical LMS analysis techniques [11], we an-

alyze next the performance and convergence of identi-
�cation by STAR assuming for the sake of simplicity
the use of a well known reference (i.e., pilot-assisted
version). Exact derivations for the blind version could
be made, but we shall see that analysis results still hold
in the case of decision feedback instead of a known ref-
erence. Later, we exploit these results to evaluate and
optimize capacity for the pilot-assisted (i.e., coherent
detection) and the blind (i.e., coherent detection and
di�erential decoding) array-receivers.

III. Performance and Convergence Analyses

For the sake of clarity and brevity, we avoid math-
ematical derivations and directly provide the main
performance and convergence analyses results. These
results are validated by simulations to provide best
choices of the step-size � that achieves optimized chan-
nel identi�cation and capacity at di�erent operating
conditions of noise and fading rate.

A. Theoretical Results

First, we show that the step-size � should be
bounded:

0 < � < �max ; (4)

where the maximum step-size �max is given by:

�max =
2

 2
: (5)

This equation known as the stability condition guaran-
tees convergence of the propagation channel estimator.
If � satis�es this condition, the propagation channel
estimator Ĥ

�n
is locally biased at convergence by:

��H
�n

= ��1 _H
�n

; (6)

where the time constant to convergence in the mean
sense �1 is given by:

�1 =
1

� 2
; (7)

and where the channel speed vector _H
�n

is locally ap-
proximated by:

_H
�n

=
H
�n

�H
�n��1
�1

: (8)

The time constant �1 is the number of iterations
required for convergence of the tracking procedure.
It introduces a response delay to the channel time-
variations and leads to a bias in channel estimation.
On average, this local bias ��H

�n
is centered. However,

its contribution in the mean square sense re
ects the
temporal correlation of Rayleigh fading and cannot be
neglected, as shown next.
Indeed, we establish that the steady-state misadjust-

ment at convergence is given by:

�2(�; �2N ; fDTs) =
E
�k�H

�n
k2�

MP
=
E
h
kĤ
�n

�H
�n
k2
i

MP

= �2N (�; �
2
N ) + �2D(�; fDTs) ; (9)

where the time constant to convergence in the mean
square sense �2 is given by:

�2 =
1

2� 2
�
1� �

�max

� : (10)

Equation (9) shows that misadjustment is the sum of
two terms. The �rst, �2N (�; �

2
N ), is the contribution of

errors due to noise and corresponds to the misadjust-
ment when the channel is static (i.e., fD = 0 Hz):

�2N (�; �
2
N ) =

�2
�1
��2N : (11)

It increases with higher values of � and lower SNR
levels as adaptation perturbations around the optimal
solution increase at steady-state. The second term,
�2D(�; fDTs), is the contribution of errors due to the
tracking response delay to the channel time-variations.
It represents the misadjustment if the received signal
is noise-free (i.e., �2N = 0):

�2D(�; fDTs) =
2

P
f1�B0 (2�fDTs�1)g ; (12)

where B0(x) is the Bessel function of the �rst kind of
order 0. This term increases with smaller values of �
and higher fading rates fDTs as the tracking response
delay and the channel time-variations increase respec-
tively.
As con�rmed by the solid-line theoretical curves of

Figs. 1a to 3a (see details next), there is a tradeo� be-
tween the contributions of the two mean-square iden-
ti�cation error terms mentioned above, resulting in a
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Fig. 1. Misadjustment �2 vs. step-size � for di�erent values of
fD at SNRin = 5 dB. (a): theoretical (solid), experimental
with reference (dashed), optimal point ('o'). (b): experi-
mental with reference (solid), experimental with feedback
(dashed).

minimum misadjustment �2min achievable at an opti-

mal step-size ��
2

opt (see points marked with 'o'). For
lower values of �, the channel identi�cation procedure
of Eq. (3) is less able to track time-variations and
�2D increases. For higher values, perturbations due to
adaptation in (3) are higher and �2N increases. In ei-
ther case, the total misadjustment �2 increases. In
the following, we validate the above analysis results
by simulations.

B. Validation and Discussion

To illustrate and validate the previous theoretical
analysis results, we consider the case of M = 4 an-
tennas and P = 3 equal power paths. Three Doppler
frequency values of 10, 100 and 200 Hz are examined,
corresponding to three representative mobile speeds of
almost 5, 50 and 110 km/h respectively (i.e., pedes-
trian, urban and highway) at a carrier frequency of 1.9
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Fig. 2. Misadjustment �2 vs. step-size � for di�erent values of
fD at SNRin = 0 dB. (a): theoretical (solid), experimental
with reference (dashed), optimal point ('o'). (b): experi-
mental with reference (solid), experimental with feedback
(dashed).

GHz. These Doppler frequencies correspond to fad-
ing rates of almost 5:2 � 10�4, 5:2 � 10�3 and 10�2

respectively at a data baud rate of 19.2 kb/s. The
static-channel case (i.e., fD = 0 Hz) is included as
a reference. Independent Rayleigh fading is simulated
using Jakes' model [12]. Experimental values of misad-
justment are obtained by averaging the mean-square
identi�cation error over 100,000 symbol iterations af-
ter convergence.

In Fig. 1a, we show the theoretical and experimen-
tal misadjustment curves to validate the analysis re-
sults at a practical SNR value of 5 dB. A good �t
is observed between the two curves, except for very
small values of � where the dominant misadjustment
term is due to tracking delay of the Rayleigh fading
channel. In that region, the theoretical curve displays
sidelobes due to the temporal correlation of Rayleigh
fading (i.e., Bessel function). On the other hand, these
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Fig. 3. Misadjustment �2 vs. step-size � for di�erent values of
fD at SNRin = 10 dB. (a): theoretical (solid), experimen-
tal with reference (dashed), optimal point ('o'). (b): exper-
imental with reference (solid), experimental with feedback
(dashed).

sidelobes are not present in the experimental curve due
to the inaccuracy of the temporal correlation pro�le of
the Jakes' Rayleigh fading generator outside the main
lobe of the Bessel function. In the absence of fading,
the two curves coincide even for small values of �.

In Fig. 1b, we compare the experimental misadjust-
ment curve of Fig. 1a obtained with an exact refer-
ence (i.e., analysis assumption) with the experimental
curve obtained with feedback. We observe again that
the two curves almost coincide, especially at smaller

Doppler frequencies, and at values of � around ��
2

opt

where the minimum misadjustment �2min is achieved.
This �gure shows that the theoretical analysis results
obtained hold for either pilot-assisted or blind array-
receivers. Figs. 2a and 3a replicate Fig. 1a at SNR
values of 0 and 10 dB, respectively. They validate the
theoretical analysis results over a wider SNR range.
Figs. 2b and 3b indicate that the approximation of
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Fig. 4. (a): optimal step-size ��
2

opt vs. input SNR SNRin for

di�erent values of fD. (b): minimum misadjustment �2min
vs. input SNR SNRin for di�erent values of fD.

the blind array-receiver performance curves by the the-
oretical ones is better at higher SNR levels.
Figures 1 to 3 all suggest that the theoretical opti-

mal step-size values provide very good approximations
to achieve optimal performance in practice with either
pilot-assisted or blind array-receivers at di�erent op-
erating conditions of noise or fading rate. In any case,

the optimal step-size ��
2

opt is located in the main lobe
of the Bessel function and is bounded by:

�

2
fDTs < ��

2

opt < �max : (13)

Therefore, the optimum step-size shown in Fig. 4a
can be obtained in practice by a simple search over �
that minimizes �2 between these bounds. At speci�ed
operating conditions of noise and fading rate, resulting
minimum misadjustment values are shown in Fig. 4b
and given by:

�2min(�
2
N ; fDTs) = �2(��

2

opt; �
2
N ; fDTs) : (14)



Higher fading rates require higher values of ��
2

opt (see
Fig. 4a) and increase the minimum misadjustment
(see Fig. 4b). Higher SNR levels also require higher

values of ��
2

opt (see Fig. 4a) to allow for better tracking
of channel time-variations, but reduce the minimum
misadjustment (see Fig. 4b). In the static-channel
case not shown in Fig. 4, �2 decreases monotonically
to 0 with decreasing values of � regardless of the SNR
level, resulting in optimal step-size and misadjustment
values both asymptotically equal to 0.

To specify operating conditions in practice, a
Doppler frequency estimator (e.g., [13]) can be used

to estimate f̂D while �̂2N and  ̂2 can be both esti-
mated from the received signals. The estimated value

�̂�
2

opt is derived from the minimization of �2(�) =

�2(�; �̂2N= ̂
2; f̂DTs) and incorporated in (3) to opti-

mize channel identi�cation and achieve �2min. We next
evaluate the impact of optimized channel identi�cation
on capacity for both pilot-assisted and blind array-
receivers.

IV. Capacity Evaluation

Using the analysis results established earlier, we �rst
propose simple computation procedures to evaluate
and optimize the uplink capacity in terms of number
of users per cell for both pilot-assisted and blind array-
receivers at di�erent qualities of service and fading
rates (i.e., operating conditions). Second, we provide
and discuss optimized capacity evaluation results and
compare the performance of pilot-assisted and blind
array-receivers.

A. Computation Procedures

Capacity computation procedures for pilot-assisted
and blind array-receivers, shown in Fig. 5, have the
same general structure. For a speci�ed bit-error rate
(BER) value before channel decoding, say pe (i.e.,
quality of service), both procedures compute the bit
energy to noise ratio Eb

No

required. After initialization,
they increment the capacity, C, until the correspond-
ing output SNR established by analysis and given by:

SNRout = SNRin
2M

1 + (P + SNRin)�2
; (15)

no longer exceeds the required Eb

No

. C is then reduced

to the largest value for which SNRout � Eb

No
. However,

the two procedures di�er in steps 1, 3.2 and 3.3 com-
puting Eb

No

, the noise variance �2N and misadjustment

�2 respectively.

In step 1, for pilot-assisted array-receivers we com-
pute the Eb

No
required with coherent detection (see Fig.

5a). However, for blind array-receivers we compute
the Eb

No

required with coherent detection and di�eren-

tial decoding (see Fig. 5b) assuming the worst case of

(a)

1. Find Eb

No
= er�nv(1� 2pe)

2 .

2. Initialize capacity C = 0 .

3. Start computation loop:

3.1. increment capacity C = C + 1 ,

3.2. compute noise variance

�2N = C(1+�2)(1+�2)
L ,

3.3. compute misadjustment

�2(�; �2N=�
2; fDTs) ,

3.4. compute output SNR

SNRout = SNRin
2M

1+(P+SNRin)�
2 ,

3.5. if SNRout � Eb

No

goto 3.1, else exit loop.

4. Decrement capacity C = C � 1 .

(b)

1. Find Eb

No

= er�nv(1� pe)
2 .

2. Initialize capacity C = 0 .

3. Start computation loop:

3.1. increment capacity C = C + 1 ,

3.2. compute noise variance

�2N = C(1+�2)
L ,

3.3. compute misadjustment

�2(�; �2N ; fDTs) ,

3.4. compute output SNR

SNRout = SNRin
2M

1+(P+SNRin)�
2 ,

3.5. if SNRout � Eb

No
goto 3.1, else exit loop.

4. Decrement capacity C = C � 1 .

Fig. 5. Capacity computation procedures at a speci�ed fad-
ing rate fDTs. (a): Cp(pe; �; �2) for pilot-assisted array-
receivers (i.e., coherent detection). (b): Cb(pe; �) for blind
array-receivers (i.e., coherent detection and di�erential de-
coding).

error propagation in di�erential decoding (i.e., multi-
plied by 2). This scenario should compensate for the
fact that the theoretical misadjustment used in the
case of blind array-receivers is over-optimistic, espe-
cially at higher BER values (i.e., lower SNR levels).

In step 3.2, we use the fact that each in-cell user is
received with a total received power of (1 + �2) 2 for
pilot-assisted and  2 for blind array-receivers respec-
tively, where �2 denotes the pilot-to-data power ratio
allocated for the pilot-assisted array-receiver. Hence
the in-cell interference powers before despreading re-
sulting from C in-cell users are C(1+ �2) 2 and C 2,
respectively. Assuming that the outcell-to-incell inter-
ference ratio is �2 [1], the total received interference
powers before despreading are C(1 + �2)(1 + �2) 2

and C(1 + �2) 2 respectively. Steps 3.2 in Figs. 5a
and 5b hence compute the received interference power
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Fig. 6. Pilot-assisted array-receiver evaluation results versus the required BER pe for di�erent values of fD. (a): optimum capacity
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opt. (c): optimum pilot-to-data power ratio �2opt.
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Fig. 7. Blind array-receiver evaluation results versus the required BER pe for di�erent values of fD . (a): optimum capacity Cb
opt.

(b): optimum step-size ��
2

opt. (c): gain in capacity over pilot-assisted array-receiver (solid - M = 4, dashed - M = 2).

after despreading with a processing gain denoted by
L assuming perfect power control (i.e.,  2 = 1) for
pilot-assisted and blind array-receivers respectively.

Finally in step 3.3, while misadjustment of identi-
�cation with blind array-receivers in Fig. 5b is com-
puted with a noise level of �2N , misadjustment of iden-
ti�cation with a pilot-assisted array-receiver is com-
puted in Fig. 5a with a noise level of �2N=�

2 seen form
the pilot.

The two procedures of Fig. 5 provide simple capac-
ity evaluation tools for pilot-assisted and blind array-
receivers, but also allow optimization of capacity at
di�erent qualities of service and fading rates. At spec-

i�ed operating conditions, the optimal step-size ��
2

opt

obtained in the previous section is used in step 3.3
to achieve the minimum misadjustment �2min. Thus
capacity expressions for blind and pilot-assisted array-
receiversCb(pe; �) and C

p(pe; �; �
2) are optimized over

�, resulting in Cbopt(pe) and C
p
opt=�(pe; �

2) respectively.

We actually observed that Cpopt=�(pe; �
2) always dis-

plays a unique maximum as a function of �2. The
tradeo� in ratio �2 lies between a better reduction
of identi�cation errors from pilot with stronger val-
ues (see step 3.3, Fig. 5b) and a better reduc-
tion of received interference with weaker values (see
step 3.3, Fig. 5b). Hence, similarly to the simple

search over ��
2

opt described earlier below Eq. (13),

Cpopt=�(pe; �
2) is further optimized by a simple search

over an optimal pilot-to-data power ratio �2opt that

maximizes Cpopt=�(pe; �
2), resulting in an optimal ca-

pacity for pilot-assisted array-receivers Cpopt(pe) =

Cpopt=�(pe; �
2
opt).

B. Results and Discussion

We now compare optimal capacity results for pilot-
assisted and blind array-receivers. We also give the
corresponding optimal values of the step-size and the
pilot-to-data power ratio at di�erent qualities of ser-
vice and fading rates. In addition to the parameters
selected in subsection III-B, we consider for illustration
the case of a processing gain L = 64 and an outcell-
to-incell interference ratio �2 = 1.

In Fig. 6, we provide evaluation results for the pilot-
assisted array-receiver at di�erent Doppler frequencies.
In Fig. 6a, we show the optimal capacity in the static-
channel case (i.e., fD = 0 Hz) for comparisons as an
upper bound asymptotically reached with values of �
and �2 both approaching 0. The pilot-assisted array-
receivers su�er from a signi�cant loss in capacity com-
pared to the static-channel case. The results suggest
that capacity is very sensitive to Rayleigh fading. It
degrades rapidly at low Doppler frequencies, but more
slowly as the Doppler frequency increases further.

Fig. 6b shows that the step-size selected for opti-



mization of capacity is almost constant over a wide
range of qualities of service. Curves indicate values
around 7 � 10�3, 5 � 10�2 and 8 � 10�2 respectively
to the Doppler frequencies selected. Similarly, Fig. 6c
shows that the optimal pilot-to-data power ratio re-
quired for optimization of capacity varies a little over
a wide range of BER values. As would be expected in-
tuitively, the pilot-to-data power ratio increases from
15 to 35% with higher fading rates and covers the range
of values suggested for practical systems.

In Fig. 7, we provide evaluation results for the blind
array-receiver at di�erent Doppler frequencies. Due
to di�erential decoding, Fig. 7a shows that the upper
bound curve of capacity asymptotically achievable in
the static-channel case (i.e., fD = 0 Hz) is lower as
compared to the same curve of Fig. 6a. Evidently
blind array-receivers su�er from a relatively less sig-
ni�cant loss in capacity. Their performance appears
more robust to Rayleigh fading and results overall in
a higher capacity as will be discussed below.

Similarly to Fig. 6b, Fig. 7b indicates that almost
constant values of the optimal step-size can be selected
for a wide range of BER values around 10�2, 7� 10�2

and 10�1 respectively to the Doppler frequencies con-
sidered.

Most importantly, we plot in Fig. 7c the gain
in capacity of blind array-receivers over pilot-assisted
array-receivers, given by Cb(pe)=C

p(pe) � 1. This
�gure suggests that blind array-receivers outperform
pilot-assisted versions in almost all the situations stud-
ied, except for the case of large BER values required
at low fading rates. It also suggests that the gain in
capacity with blind array-receivers is more signi�cant
at higher fading rates and smaller BER values. At
a practical value of pe = 6 � 10�2 for the required
BER before FEC decoding, Fig. 6c shows that pilot-
assisted and blind array receivers almost achieve the
same capacity at 10 Hz. On the other hand at Doppler
frequencies between 100 and 200 Hz, a gain in capacity
with blind array-receivers of 25 to 30 % is noted.

Finally we repeated the simulations withM = 2 an-
tennas. For both array-receiver versions, capacity is
almost reduced by half at all tested BER values and
Doppler frequencies and the optimum step-size val-
ues remain almost constant. In the pilot-assisted ver-
sion, the required pilot-to-data power ratio decreases
by a negligible amount, showing that operating at
higher interference levels with more antennas requires
stronger pilots. Fig. 7c shows the gain in capacity of
blind array-receivers over pilot-assisted array-receivers
for M = 2 and 4 antennas. The curves indicate that
the advantage of the blind array-receivers over the
pilot-assisted ones increases with a larger number of
antennas.

V. Conclusions

This work provides performance and convergence
analyses of channel identi�cation by pilot-assisted and
blind CDMA array-receivers adaptive to Rayleigh fad-
ing validated by simulations. Our analysis allows the
selection of an optimal adaptation step-size for the
minimization of identi�cation errors at di�erent oper-
ating conditions of noise and fading rate. These results
can be applied to derive a simple capacity computation
tool that allows evaluation and optimization of pilot-
assisted and blind adaptive array-receivers at di�erent
qualities of service and fading rates. For pilot-assisted
array-receivers, this tool enables us to select an opti-
mal pilot-to-data power ratio. Evaluation results sug-
gest power-ratios increasing with higher fading rates
from 15 to 35%, in the range of values suggested in
practice. Our results suggest that blind array-receivers
perform better than pilot-assisted versions at higher
fading rates and smaller BER values, the di�erence
increasing with more antennas, but are comparable at
fading rates corresponding to portable terminals.
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