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Abstract

In this contribution, we present a performance anal-
ysis of STAR, the spatio-temporal array-receiver for
cellular CDMA systems. First, we perform a conver-
gence analysis and provide the stability condition, the
steady-state misadjustment and the speed of the iden-
tification step. From these results, we compute the
probability of false detection of the time-delay acqui-
sition step. Next, we study their impact on both the
acquisition and the tracking modes and give analytical
expressions for the output signal to noise ratio (SNR)
and capacity. Finally, we confirm by simulations the
performance analysis and the enhancements achieved
by STAR in acquisition and capacity.

1. Introduction

Array processing was recently applied to CDMA sys-
tems to improve the capacity of personal communi-
cation systems [1],[2]. Its exploitation motivates the
development of new CDMA array-receivers combining
acquisition. These techniques involve processing both
in time for synchronization, and in space for combin-
ing multiple diversity branches.

Recently, a spatio-temporal array-receiver (STAR)
using a new space/time structural approach was pro-
posed [3],[4]. Compared to previous methods (e.g.,
2D-RAKE [5], RAKE-like [6]), STAR offers many ad-
vantages such as an attractive formulation, very low
complexity and high performance.

In this paper we provide a theoretical performance
analysis of STAR and validate it by simulations.

2. Signal Model and Algorithm

We consider a cellular CDMA system where each base
station is equipped with a receiving antenna of M sen-
sors. The BPSK bit sequence of the desired user is
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first differentially encoded at the rate 1/T where T is
the bit duration. The resulting DBPSK sequence b(t)
is then spread by a personal and periodic code c¢(t)
with period T at the rate 1/7,. where T, is the chip
pulse duration. The processing gain is then given by
L = T/T.. A multipath fading environment with a
number of paths P is also assumed.

At time ¢, the M x 1 observation vector received by
the antenna array is written as:

P
X(t) = 0(t) Y Gplt)ep(0)b(t — ty)e(t —t,) + I(t) , (1)

where ¢, € [0,T) are the propagation time-delays,
Gp(t) are the normalized propagation vectors, e2(t)
are the fractions of the total power 1 (t) received from
the desired user along each path. I(t) is the noise term
which includes the thermal noise received at the an-
tenna elements as well as the self, in-cell, and out-cell
interference.

We make the reasonable assumption that the time
variations of Gp(t), 3 (t), and ¥*(t) are slow and lo-
cally constant as compared to the bit duration 7. To
keep the discussion simple, we also assume that the
time-delays are constant in time and equal to multi-
ples of the chip duration T¢ (i.e., tp, ~ 7pT¢, s.t. Tp €
{0,...,L — 1}). Time-delay tracking with STAR is
specifically addressed in [3]. For the need of the anal-
ysis, we make further assumptions as follows:

e the interference is a spatially and temporally white
Gaussian process with mean zero and variance 0’%,

e the number of paths P is perfectly known,

e a perfect power control is achieved (i.e., ¥ (t)? = 1?).

After despreading and sampling of X (¢) at the chip
rate, the resulting stream of data, say Z(t), can be
sliced at the bit rate into compact matrices following
the post-correlation model (PCM) developed in [3]:

Z, =s,Hy + N, , (2)

where s, = ¥,b, is the signal component, and Z,, is
the M x L post-correlation data matrix whose columns



are Zp (k) = Z(nT+kT,) fork=0,...,L—1. The M x
L noise matrix N,,, with variance 0%, = 0%/L at each
element, results from the despreading and sampling of
interference. The columns of the M x L propagation
matrix H,,, denoted by H,(k), are modeled in [3] as:

P
Hy (k) = Z Gpnepnp(k — 1) (3)
p=1
) epmGpn fk=mforp=1,... P,
10 ifk#1p,

where p(k) is the auto-correlation function of the chip
pulse. Since 7, is an integer, we use the approximation
p(k —1p) ~ 6(k — 7). To avoid the ambiguity due to
a multiplicative factor between H,, and s,, we fix the
norm of H,, at VM (i.e., |Gp.n||> = M). By reshaping
the M x L matrices in Eq. (2) into ML x 1 spatio-
temporal vectors, we obtain the following narrowband
version of the PCM model [3]:

where Z,,, H, and N, denote the resulting vectors.
Eq. (4) shows that the desired signal lies in a one-
dimensional spatio-temporal signal subspace. There-
fore, it allows an efficient use of simple narrowband
array processing techniques [3].

Indeed, at each block iteration, an estimate of H,,,
say Hn, is provided by STAR. Then, by narrowband
matched beamforming [3], sp, by and v, are first es-
timated as follows:

. :Re{HnHZn /M} - ,’;;gRe{Hn(k)Hzn(k) /M} . (5)

b, = sign{s,}, (6)
h=(1-a)dn  +ad,, (7)

where « is a smoothing factor. Second, the channel
estimate EIn is updated in a decision feedback iden-
tification (DFI) scheme, by feeding back the signal
component estimate §,, as a reference signal in the fol-
lowing LMS-type eigen-subspace tracking procedure

[3]:
Hn+1 = Hn +u (Zn - Hngn) §n ’ (8)

where p is an adaptation step-size. This DFI scheme
allows a 3 dB coherent detection gain in noise reduc-
tion in Eq. (5) by recovering the channel phase offsets
in Eq. (8) without a pilot [3].

After convergence, we define, for k=10,...,L — 1,
a localization spectrum which simplifies from [3] to:

S2(k) = D(k)TH, B, D(k) = | H,(R)?,  (9)

where D(k) is an L x 1 vector which is null except
for the (k 4+ 1)th component which is equal to 1. It
approximates the following perfect localization spec-
trum:

Sn(k) = | Ha(k)|? (10)
_f e,M fk=rnforp=1,..,P,
10 itk #1,,

Since P is assumed to be known, the time-delays can
be estimated as the values 7, of k € {0,...,L — 1}
for which S2(k) displays the P largest peaks. In the
tracking mode, Eq. (5) finally simplifies from [3] to:

bn = iRe{ﬁn(%p)HZn(%p)/M} NGE)

As mentioned earlier, the tracking of the time-delays
and their number is addressed in [3].

3. Performance Analysis

In this analysis, we first study the convergence of the
identification procedure of Eq. (8). Secondly, we as-
sess its effect on time-delay acquisition of Eq. (9).
Finally, we evaluate the impact of both identification
and time-delay acquisition errors on the output SNR
and the capacity in the tracking mode of Eq. (11).

3.1. Accuracy of Channel Identification

We study the accuracy of the channel identification
step in terms of the speed of acquisition and the mean
square error (MSE) of channel identification errors.

To simplify the analysis, we make the approxima-
tion that s,, = s,,. We will see next that this approxi-
mation is reasonable at relatively low input SNR val-
ues. The DFI scheme of Eq. (8) reduces in this case to
an exact adaptive LMS implementation' whose anal-
ysis can be made following well-known methodologies
explained in [7].

First, we easily prove that the propagation matrix
estimator H,, is asymptotically unbiased. Second, if
we denote by 37, ,(n) the identification MSE over the
(m, k)th component of the M x L propagation matrix
H,,, then we obtain the following recursion:

2\ 21
2 k) (1= )8, ,(0) + ok ) 1)
— b
where 37 ,(0) is the initial MSE. Based on this equa-
tion, we obtain the stability condition for convergence:

2
0</l/<,umax:ﬁ, (13)

LA further study involving the DFI scheme of Eq. (8) effec-
tively implemented in STAR is under way.




the time constant to convergence:

1
C2up?

and the steady-state misadjustment at convergence:

(14)

Ny

2 ZJLIEOE [IIH;/[—LELLIIZ] B

I 1
B Hmax — W SNRin ’

(15)

where SN Ry, = 9?/0% is the input SNR after de-
spreading, all regardless of the index pair (m, k).
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Figure 1 Total identification MSE M L3?(n) versus the
iteration index n at an input SNR of 3 dB for different val-
ues of u: theoretical (solid), experimental (dashed), slope
of convergence (semi-dashed).

Fig. 1 shows the theoretical and experimental learn-
ing curves with two practical values of p in the sta-
bility range of Eq. (13), typically small compared to
the upper bound pimax- They confirm that the speed
of convergence can be made as fast as required with
higher values of p. As expected from Eq. (14), we can
measure from the initial slopes of the curves that the
constant time n., is equal to 50 and 25 with p fixed at
0.01 and 0.02 respectively. With x4 = 0.05 as in [3],[4],
convergence is reached in a time interval as short as 10
bit iterations. This is also the time required for time-
delay synchronization. Therefore, STAR achieves very
fast acquisition.
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Figure 2 Total identification MSE at steady state
MLA? in dB versus the input SNR after despreading
for different values of u: theoretical (solid), experimental
(dashed).

Notice however that the steady-state misadjustment
increases with higher values of u, showing a trade-off

between the acceleration of acquisition and the reduc-
tion of identification errors. Fig. 2 shows a 3 dB
increase in identification MSE as we double the step-
size value p. As expected from Eq. (15), it also shows
that identification errors decrease linearly with the in-
put SNR on a dB scale. Notice finally that the ex-
perimental and theoretical curves become closer and
almost coincide as the SNR values increase, thereby
confirming that the approximation §,, = s, becomes
reasonable at relatively low SNR values.

By controlling the steady-state misadjustment, the
selection of p has an additional effect on time-delay
acquisition other than fixing the speed of synchroniza-
tion. It also determines the quality of acquisition. To
illustrate this effect, we can see that the localization
spectrum of Eq. (9) has the following average value:

P
E[$2(0)] = M (Z €2 0k —7,) + 52> . (16)

The above-mentioned trade-off between speed and mis-
adjustment thus translates into a more interesting trade-
off between speed and accuracy of time-delay acquisi-
tion that we evaluate next in more detail.

3.2. Accuracy of Time-Delay Acquisition

We assess the accuracy of time-delay acquisition in
terms of probability of false detection (i.e., at least
one path was not detected). To do so, we define the
event of a correct acquisition of all paths:

A={ in {Suto > e {80} a7

= ﬂ {Sn(Tp) > Sn(k)} = ﬂ A(rp, k)

The probability of A(7,, k) = {Sn(Tp) > Sn(k)} is
given by:

Pe(rps k) =P [A(my, K)] = /

0

+oopx

f'rp,k(x:y) dx dy ) (18)
0

where f; 1(z,y) is the joint probability density func-
tion of Sy(r,) and S, (k). The positive random vari-

ables S, (,) and S, (k) have respectively a Ricean and
a generalized Rayleigh distribution [8] with probabil-
ity density functions given over [0, +00) by:

20MBy oy (Mpat)  _atene,
fr (@) = 7L 9)
B (VMepn)M1
Qp2M—1 _z?
. e 7, (20)

fr(z) = PVT(M)



where I' is the Gamma function and B; is the ith-
order modified Bessel function of the first degree. We
assume here that S,,(7,) and S, (k) are independent.
Therefore, p.(7p, k) is constant for k ¢ {m,...,7p}
and given by:

“+oopx

pe(Tps K) = pe(rp) = / 1@ nw dray . 2)

0

From Eq. (17) and Eq. (21), we obtain the probability
of false detection as:

P
pr=1-P[A]=1 —H Pe(Tp, k) =1 _Hpc (Tp)(Li'P) (22)
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Figure 3 Probability of false detection ps versus the
input SNR after despreading for different values of p: the-
oretical (solid), experimental (dashed).

In Fig. 3, we plot the experimental and theoreti-
cal curves of p; obtained by numerical computation
using, respectively, the experimental and theoretical
values of 32 given in Fig. 2 and assuming an equal
power partition over paths (i.e., 3, = 1/P). Both
curves show that py is extremely small at relatively
very low SNR values. In this range of SNR, the gap
between the theoretical and experimental misadjust-
ments of Fig. 2 produces a factor of almost 10 between
the theoretical and experimental probabilities of false
detection. This factor should decrease to 1 at higher
SNR values untested here due to computational accu-
racy limitations.

As we double the step-size value u, notice that we
translate the curve by 3 dB in input SNR. With M =4
antennas and P = 3 equal power paths, we can expect
at an input SNR around 0 dB an experimental prob-
ability of false detection as small as py ~ 107°% with
© = 0.05. With this value of u, time-delay acquisi-
tion is made within 10 bit iterations only. Therefore,
STAR can achieve very fast synchronization with a
very small probability of false detection.

3.3. Impact on SNR and Capacity

We assess now the impact of identification and acqui-
sition errors on the system capacity, the key figure in

performance results. For the sake of simplicity, we do
not consider the case of a dynamic capacity but es-
timate the maximum number of users accommodated
in the tracking mode given a required bit error rate
(BER).

To do so, we need the output SNR in the track-
ing mode, but we also provide the output SNR in the
acquisition mode for comparison. Following the same
methodology as in [4], we derive both expressions us-
ing Eq. (11) and Eq. (5) respectively, along with Eq.
(15). First, at the acquisition mode, the output SNR

18:

2M
SNR(élt == SNRin W . (23)
2 F + 1
2—pip?
Second, at the tracking mode, the output SNR is:
P —
SNRgy = > pf(P)SNRG) . (24)

P=0

where for P = 0,..., P, the probability that P paths
out of P are not detected ps(P) is given by:

_ L—P _ P B 5
pf(P):< P )(1_p£L P)) ng P)(P p)7 (25)

and SN R(()ft) is the corresponding output SNR given
by:

p 2M P-P
SNR®) = SNRy, —— . (26)
K 01f+w2) + 1 P
2—p1p?

We assume for the sake of simplicity the case of an
equal power partition over paths (i.e., 527,1 = 1/P);
hence the constant value of p.(7,) = p. in Eq. (25) and
the fraction (P — P)/P of signal power extracted from
the detected paths in Eq. (26). In addition to this
fraction, notice also the reduction of the identification
errors term by the ratio P/L, compared to Eq. (23).
This is due to the fact that only P vector fingers out
of L are combined in the tracking mode in Eq. (11)
after time-delay acquisition.

The resulting gain L/P in identification errors was
also found in the less evident case of continuous time-
delays addressed in [3], where even in the tracking
mode all vector fingers are used. This shows that the
projection of the estimated channel over a time man-
ifold is the underlying reason for this gain (see [3])
and that the performance analysis holds whether the
time-delays are multiples of T, or continuous in [0, 7).

This reduction of identification errors improves the
output SNR in the tracking mode despite the presence



of time-delay detection errors. Indeed, we noticed that
SN R};t can be approximated by SN R(()?J)t in very rea-
sonable conditions. With p¢ < 0.05 and SNR;, > 0
dB, pf(O)LS’NR(()?l)t is almost 44 dB above the sum of
the remaining terms in Eq. (24). Fig. 4 plots the
BER as a function of the input SNR with ¢ = 0.02
and translates this improvement in SNR from the ac-
quisition to the tracking mode into an enhancement
in the BER, which was observed also in [3].
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Figure 4 Experimental BER versus the input SNR after
despreading in the acquisition (dashed) and the tracking
(solid) modes for p = 0.02.

Now that we have established the advantage of the
tracking mode, we can compute the capacity as a func-
tion of the required BER using their respective rela-
tions with the SNR given in [4]. We obtain the capac-
ity C' as a function of the BER value pe after differen-
tial decoding of b,,:

L [+ 2MPeeieopey)
o B [erf ™ (1-p.)] L i
(pe) - P,U/w2(f + 1) + ( )

( oML
(L+ f) [erf " (1 - pe

where erf(x) is the usual error function [8] and f is a
factor modeling the contribution of out-cell interfer-
ence [1] (see [4] for more details).

As shown in Fig. 5, capacity increases with smaller
values of p and approaches the upper bound given
in the second expression of Eq. (27) and established
in [4], in the case of perfect channel identification and
time-delay acquisition. This shows the impact of iden-
tification and synchronization errors on capacity.

With M = 4 antennas, P = 3 equal power paths
and f = 0.6 (see [1],[4]), the capacity is upper bounded
by 60 at a required BER of 1072 and equal to 54, 57
and 58 with u fixed at 0.04, 0.02 and 0.01, respectively.
With x4 = 0.01 the loss in capacity is 3.3% compared
to the upper bound. As we successively double the
value of p up to 0.02 and 0.04, we increase this loss by
1.7% and 6.7% respectively. However, we increase the
speed of acquisition by 100% and 300% respectively.

5 +1 +0(p) ,
N ) 8

Overall, STAR can achieve a high capacity [4] with a
very fast and accurate time-delay acquisition.
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Figure 5 Static capacity in the tracking mode versus
the required BER for different values of the step-size pu.

4. Conclusion

We analyzed in this paper the performance of STAR
for cellular CDMA systems. We proved that STAR
achieves very fast synchronization with a very small
probability of false detection: with M = 4 antennas,
P = 3 equal power paths and an input SNR around
0 dB, we can expect a time-delay acquisition with a
probability of false detection as small as 10~% within
10 bit iterations only. In addition, loss in capacity due
to acquisition errors is relatively small.
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