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ABSTRACT 
We present a novel adaptive algorithm in the frequency d e  
main with a low order of arithmetic complexity for simulta- 
neously performing beamforming, source direction finding 
and array shape calibration. The algorithm is proposed 
for multiple wideband sources, but could be applied to  
the narrowband case or to a single wideband source. The 
source signals are first estimated using a set of beamform- 
ers. These estimates are processed with the observation 
signals to track the steering vectors within the signal sub- 
space. The adapted steering vectors are projected over the 
array manifold, to finally estimate the source directions and 
sensor positions. Simulations show the efficiency of the al- 
gorithm to achieve the proposed tasks. 

1. INTRODUCTION 

DAPTIVE beamforming and localization algorithms A can be extremely sensitive even to slight errors on the 
array shape, the sensors' gain and phase, and the DOAs 
(direction of arrival) [I]. 
To tackle this problem, beamforming algorithms such as 

[a] were developed to  be robust to DOA errors. Their main 
task was not to  correct the errors themselves, but to design 
beamformers with reasonably suboptimal performances in 
such a way that they become insensitive to them. Local- 
ization algorithms based on eigensubspace approaches and 
computationally more expensive were also proposed to di- 
rectly find the DOAs. However, these methods remain sen- 
sitive to any modeling error related to the array shape or 
sensor characteristics. 

Some algorithms were then proposed to reduce both the 
DOA errors and either sensor phase and gain [3,4] or lo- 
cation [5-71 uncertainties over the array sensors. These 
methods usually apply eigensubspace or ML approaches to 
determine a cost function of the vectors lying in it. An 
optimization of this function in the array manifold is usu- 
ally made through a prohibitive search 0 x 1  the modeling 
parameters to find their optimal values [3,5-71. However, 
these algorithms are either too costly to implement, or their 
applications are limited to certain forms of arrays. 
In [ 8 ] ,  we proposed an adaptive beamforming algorithm in 

the narrowband case, robust to localization errors and easy 
to  implement. I t  is based on a tracking procedure of the 
steering vector, combined with a significant projection over 

the array manifold for location parameter extraction. The 
performance analysis and simulations proved the capacity 
of the algorithm to correct source location errors, and even 
to track mobile sources with efficient noise reduction and 
source extraction. We also generalized this algorithm to 
the multi-source [9] and wideband [IO] cases, and proved 
its capability to track sources with source location errors 
within a practical range. 

In this paper, we propose to  reduce both DOA and sensor 
location errors in an adaptive manner through a significant 
extension of [8-101 to array location calibration with wide- 
band signals. A generalization of the proposed algorithm 
to the calibration of phase and gain errors can be easily 
derived from the formulation made in this paper. The for- 
mulation is actually made but not limited to the case of a 
linear array, as shown in the generalization briefly described 
in section 4. 

2. MATHEMATICAL FORMULATION 

We consider the following model of p wideband plane waves 
propagating signals received by a m-sensor linear array at 
t ime t  (1 < p  5 m): 

where X ( t )  is the m-dimensional observation vector, S( t )  
is the desired p x 1 column vector of wideband signals to be 
extracted, and N ( t )  is an additive zero mean noise vector. 
G(t)  is the m x p matrix of Dirac impulse responses, and 
@ denotes time convolution. 
We consider here the case of far-field emitting sources, and 

do not take account of any possible phase or gain perturba- 
tions of the array sensors. T ~ , ~  2 is the propaga- 
tion time delay from the jth source to the z t h  array sensor. 
C is the celerity, E = [(I, &, . . . ,&IT  is the vector of array 
sensor locations, and CO = [ d ~ ,  42, . . . , is the vector of 
source DOAs. 

We assume that the number p and the DOAs of all the 
point sources are approximately initialized- by a localiza- 
tion technique or given by the vector @O = [ ~ I , o , .  . . , J p , 0 l T .  

Those sources which are not localized will have relatively 
small power, and will be confused with spatially diffuse 

1904 0-7803-2431 -5/95 $4.00 0 1995 IEEE 

mailto:affes@sig,enst.fr


noise. Moreover, we assume that the m array sensor posi- 
tons are given with jnitial errors in a reasonably limited 
range by the vector Eo = [ E ~ , o , E z , o , . . . , E ~ , o ] ' .  As well, S 
and N are assumed to be mutually independent. 

Signals 
> Classical 

Beamforming 

-Y,(t) G - + + G q L /  f th  bin i 
Figure 1: Serial to parallel and transform to the frequency 
domain of the observation signals. 
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Taking now the Discrete Fourier Transform (DFT) of the 
observation signals over 2-sample blocks' as in [lo], we can 
transpose the problem to the narrowband case as follows 
(see Figure 1): 

&." 
fl 

G f 3 n  I .. 
LMS-Like Steering 

where the subscripts f = 0, t , . . . ,  and TI denote the 
DFT of the indexed quantity respectively at the normalized 
frequency f and the block iteration n. The DFT of G(t ) ,  
G j ,  can be written as follows: 

Signals 

2-1 

F is a modeling function of a plane waves propagation of 
a narrowband source around a carrier frequency f, where 
6' 2 is the wavenumber at the normalized sampling 
frequency. 

Given the propagation model F(6 ' ,2 ,  f ) ,  the initial steer- 
ing vectors @f,o = [ P ( & , O ,  e o ,  f), ... , F ( B , , ~ ,  %, f)] must 
be simultaneously and accurately time-adapted and cor- 
rected so as to  perform calibration from the unique obser- 
vations available Xf,,.  We propose in the following an al- 
gorithm for adaptively correcting the source wavenumbers 
0, ( i . e .  the DOAs @,): and simultaneously calibrating the 
array sensor locations Zn. 

- Matrix Tracking 

3. PROPOSED ALGORITHM 

-.- [I 

Given the observation vector Xf, , ,  the source signals vector 
Sf , ,  =   SI,^,,, . . . , s , ~ , ~ ] ~  is first estimated using a set of 
p classical beamformers H f , ,  for f = 0,. . . , as follows 
(see Figure 2 ) :  

We actually propose the following m x p  conventional beam- 
forming matrix: 

' I is assumed to be large in comparison to the wavefront tran- 
sit time across the array sensors. 

which satisfies the equation Hf ,Gf , .  = I,, where Ip is a 
p x p identity matrix. In [9], H J , ,  is shown to have optimal 
performance in the presence of uncorrelated white noise. If 
the number of sensors m is relatively large, we can avoid 
the matrix inversion in (6). Weighting functions W such as 
Kaiser or Hanning windows of length m could be used in- 
stead at the array sensors to  minimize the sidelobes partic- 
ularly at the jamming locations, by H f , ,  = diag(W) Gf,n .  
Parallel GSC (generalized sidelobe canceller) beamformers 
could be used instead, if the p sources are in addition mu- 
tually uncorrelated [8-91. 

The estimated frequency components sf,, allow the syn- 
thesis of the desired wideband signals in the time domain 
using the OLS (overlap save) technique. 

Source Directions 

Figure 2: The block diagram a t  frequency f. 

In [8-91, we proposed signal subspace tracking procedures 
in the narrowband case, which are able to track the steer- 
ing vectors in the array manifold from the observed and 
estimated signals X f , ,  and Sf,,. In the wideband case, we 
applied the tracking equations for a single desired source at 
a given frequency bin, and adapted the analysis results to 
it [lo]. We proved a combined tracking in a well selected 
set of say q "tracking frequencies" f', fi, . . . , f, to perform 
better to some extent [lo]. 

For f = fi, fz,. . . , fq, we thus correct the steering vectors 
G f  in the same way as in [9] at each block iteration as 
shown in Figure 2:  

Gf.n+l = @f,n  + P ( X f , n  - Gj,ngf ,n)  g f n  > (7)  

where p is a given step-size possibly including a normal- 
ization factor. Of course, it_ is not readily defined that the 
updated steering vectors G f , ,  belong to the array mani- 
fold. Hence, we should project them on it so as to extract 
both the DOAs and the sensor positions and to reconstruct 
Gf,,. This can be achieved by using a linearization tech- 
nique based on a first order Taylor series expansion of the 
propagation modeling function F in (4). We have already 
explained this procedure when applied to DOA extraction 
alone. We have interpreted it ae a linear regression of the 
adapted steering vector phase components over the m sen- 
sor positions 181 (see also a similar approach in [4]). We 
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equivalently extract the source wavenumbers as follows (see 
Figure 2 ) :  

where the array center is assumed to be at the origin ( i . e .  

fined for any couple 3f m x p matrices A = [a,,,] and B = 
[bE,3] such that arg,(A,B) = [arg(a,,, l f 3 ) ] .  We already 
proved in [lo] that the combination of the q wavenumber 
estimates yields a lower misadjustment and speeds up the 
convergence when compared to the narrowband case ( i . e .  
estimation in one frequency). If we assume for simplicity 
the signal and also the noise powers to be quite equal at 
all tracking frequencies, then we have (see [lo] for more 
details) : 

lmzn T A  = 0 where 1, = [I, 1 , .  . . ,1]*), and arg,(.) is de- 

L k = l  J k  

We now introduce an additional step allowing the extrac- 
tion of the sensor positions following each DOA adjustment. 
By analogy to equations (8) and (9), we perform another 
linear regression of the steering vector phase components 
over the p source wavenumbers to estimate the locations of 
the sensors: 

1m2z is the projector orthogonal to where E, = I ,  - - 
the m x 1 column vector 1,. In the same manner, we also 
combine the q estimates of 3 as follows: 

A 

L k = l  J k  

The improvement in performance due to combination of 
array sensor calibration at different frequencies is also con- 
firmed by simulations. ~ 

In general, combinations in (9) and (11) can be seen as 
weighted regressions over p x q elements. Particularly in 
the presence of a single source ( i .e .  p = l), (11) performs 
a simple regression over the wavenumbers at different fre- 
quencies on condition that 8 # 0. 

Finally, we can see that calibration is possible either in 
the presence of well located multiple sources possibly nar- 
rowband, or a single wideband source, as we can benefit 
from p x q observations for each sensor (1 5 q 5 I ) .  

4. SIMULATION RESULTS 

For simulations, we consider p = 5 uncorrelated wideband 
sources with quite equal powers, corrupted by an uncor- 
related white noise at a mean SNR (signal to noise ratio) 
of 1 0  dB. We select q = 3 tracking frequencies for com- 
bination. We simultaneously run the algorithm with and 
without calibration, using or not equations (10) and (11). 

In Figure 3-a, we first test a linear array of m = 16 sen- 
sors supposed to be equidistant at half the wavelength. The 

calibration step enables the algorithm to reduce the MSE 
(mean square error) of sensor location by approximately 20 
dB within 1000 iterations, as shown in Figure 3-b. Both 
running versions significantly reduce the MSE of DOA lo- 
calization to the range of lo-' deg2 as shown in Figure 3-c, 
although calibration slightly improves the results. We ac- 
tually avoid any ambiguity arising from a translation of the 
array as we constraint its center to be at the origin. This 
corresponds to a signal time delay estimation whose effect 
is not of the scope of this paper. We hence take the true 
array center at the origin. We see however the ambiguity 
arising - from the multiplicative factor (Y between 3 and 0 
as 2 x cue = 3 3 ,  although a is typically very close to 
1 a t  convergence. Despite this negligible effect, the steer- 
ing vectors are well identified with calibration. The MSE 
of signal estimation is reduced by 12 dB (lOloglo(m)), the 
best gain achievable by the beamforming matrix in (6) in 
the presence of uncorrelated white noise [9]. 

a: Array sensor positions and DOAs 
0: real, x: initial, +: final 

- : real - - : initial - - : estimated with/without calibration 

ex ec ec ec xe xe xe xe xeex XB) 5 ex ex xe e: 

- 8 - 6 - 4 - 2  0 2 4 6 8 
b: MSE of array sensor locatlon averaged over sensors 

; -20 

-25 
z 
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looO Iteration Index. 

c. MSE of DOA localization averaged over sources 

4 1 \'. i 

0 1000 2000 3000 4000 5000 
Iteration index. 

d: MSE of signal estimation averaged over sources 

-0 1000 2000 3000 4000 5000 

Figure 3: Performances in sensor and DOA localization a n d  
source extraction for a linear array. 

Other simulations not shown in this paper, made with 
p = 1 and q = 5, prove the algorithm to have comparable 
performance. 

Iteration index. 
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a: Array sensor positions and DOAs 

E , ’  

270 _ .  . real - - .: initial L :estimated with/without calibration 

b: MSE of array sensor location averaged over sensors 
0: real, x: initial, +: final 

-0 2000 4000 6000 8000 loo00 
Iteration index. 

C: MSE of DOA localization averaged over sources 
I 

Target tracking and array calibration 

5: 

2000 4000 6ooo 8OOo 1 0000 
10-1 

Iteration index 
d. MSE of signal estimation averaged over sources 

-“O 2000 4000 6000 8Ooo loo00 

Figure 4: Performances in  sensor and  DOA localization and 
source extraction for a circular array. 

Iteration index. 

We secondly generalize the algorithm to a 2 dimensional 
array. To do so, we redefine & = [E:, [PIT and 8, = [e,., e,”]‘ 

. We replace (8) y - 2 T C 0 5 ( 4 3 )  and 8, - - 
by a pair of equations where 0 and E are respectively re- 
placed by 0” and ?, Oy and Zy. In the same manner, we 
easily adapt equations (9) to (11) although we constaint 
the wavenumber e3 to have constant norm IleJ1l = $. For 
illustration, we consider a circular array as shown in Fig- 
ure 4-a. Figure 4-b shows the algorithm to handle stronger 
sensor location errors. In Figure 4-c, the MSE of DOA 
localization is reduced to the range of deg’. Initial 
errors are so high that the MSE in signal estimation is 0 
dB at t = 0. The algorithm is able to reach the optimal 
performance at convergence after 2000 iterations as shown 

where 8; - 2?rs1n(#J)  

c_ 

in Figure 4-d. The additional ambiguity due to rotations 
is not assessed in this paper. 

5. CONCLUSION 

We proposed in this paper a low order of complexity algo- 
rithm for wideband multi-source beamforming, adaptive ar- 
ray location calibration and DOA localization. We proved 
by simulations its efficiency to achieve the proposed tasks 
in the case of linear or 2 dimensional arrays, although it 
can be tested in a 3 dimensional space. The performance 
improve to some extent with increasing numbers of emit- 
ting sources and tracking frequencies. Particularly with 
low tracking frequencies, the algorithm is able to reduce 
higher initial location errors. The combination with higher 
tracking frequencies speeds up convergence and reduces the 
misadjustments. 
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