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Abstract: The underlying idea of array processing is to synchronize and average the signals coherently
propagating along the direct path covered from the desired source to the sensors. Simultaneously, any
other source arriving from a different path (i.e. jammers or noise) is incoherently received and thus
suppressed. Unfortunately, sources do not propagate along known and direct paths in real applications
such as speech acquisition in an acoustic environment. Particularly in hands-free telephony, we have to
deal with undesired propagation phenomena such as reflections or reverberations commonly encountered
in other multipath environments. We also have to deal with the presence of a strong and close echo
emitted from the loudspeaker. Prior methods developed adaptive microphone arrays for noise reduction
after a time delay compensation of the direct path. This simple synchronization is insufficient to produce
an acceptable speech quality, and makes adaptive beamforming unsuitable. In this contribution, we first
propose to partially estimate impulse responses in the frequency domain, using a signal subspace tracking
procedure we adapted from previous works. A significant acoustic feature revealed by the characterization
of the environment finally makes a quite full identification of these responses possible. Simulations made
with synthetic and real data show both objective and subjective results in speech acquisition and noise

reduction, including echo cancellation, to be very satisfying.



I Introduction

In array processing, sources are usually modeled or approximated to propagate as planar or spherical
waves. Steering can be seen in that case as a simple synchronization or compensation of the direct path. In
real applications such as speech acquisition in acoustic environments, undesired multipath propagation
phenomena such as reflections or reverberations can no longer be neglected by the processing stage.
Particularly in adaptive beamforming, early reflections can be considered as coherent jammers, and may
cause the cancellation of the desired source. Hence, steering should be rather seen as a first deconvolution
step. In that case, the array processor outputs should correspond to a simple time delay response when
summed.

Many algorithms were proposed for speech enhancement with adaptive microphone arrays [1-5]. Unfor-
tunately, most of them turn down the first stage of steering (i.e. synchronization) and put the emphasis
on noise reduction alone. In [6], we tested these methods for speech acquisition in cars and noticed their
poor performance in noise reduction. Kaneda and Ohga measure the impulse responses (IRs) from a
selected speaker position to the microphone array, then use it to train the array processor (i.e. beam-
former) with recorded noise [1]. This requires real conditions difficult to reach with mobile speakers and
nonstationary signals. The others assume a perfect synchronization of the signals performed by a time
delay compensation of the direct path [2-5]. Even this simple task is hard to achieve properly in the
presence of usually long reverberations and strong reflections, which besides remain uncompensated in
that case. In addition, it prevents the use of adaptive beamformers such as the GSC (generalized sidelobe
canceller) [11] often sensitive to steering errors and coherent interference [12], but efficient for jammers
suppression. Consequently, this scheme imposes a delay-sum (DS) structure. With a restricted number
of microphones, performances are hence limited to a poor reduction of only spatial diffuse noise.

We also proved in [6] the advantage of steering over time delay compensation achievable by beamforming
in terms of clarity index gain of the total impulse response (IR). This leaves a significant potential for
producing a very natural quality of speech and a higher intelligibility at the output.

We finally tested an improved version of [5] described in [7] for speech acquisition and noise reduc-
tion in a banker market operating room [8]. This method still proposes the use of a computationally
expensive time delay compensation unit based on cross-correlation [9]. Despite the relative improvement
in performance, we definitely mentionned in our contribution to [8] the necessity of performing steering

instead of time delay compensation to really achieve satisfactory results.



We alternatively proposed in [10] an algorithm for wideband robust adaptive beamforming based on
signal subspace tracking with simultaneous projection on an array manifold (i.e. IRs identification). We
actually studied the algorithm with a simple manifold of far-field sources as a particular case of a more
general array characterization. This flexible formulation makes room for a possible adaptation to acoustic
environments. In addition, the high performance of the algorithm and its low complexity observed in
that simple case offer a significant perspective for further implementation in real applications.

In this paper, we propose a signal subspace tracking algorithm similar to [10] adapted to speech
acquisition in a banker market operating room. In section II, we first make an acoustic characterization
of the array to possibly find the underlying features of the IRs. We will actually notice their total energy
at any frequency component to be quite constant for emitting locations around a central speaker position.
From this key observation, we introduce some significant constraints characterizing the array, then adapt
the tracking procedure to the studied environment in section III. We also introduce a voice activity
detector for the tracking inspired from [9], and a parallel GSC structure [11] for speech acquisition
and noise reduction. Simulation results described in section IV show a very good quality of speech
and an efficient noise reduction in both objective and subjective evaluations. The proposed algorithm
outperforms a similar GSC structure combined with a simple time delay compensation as suggested in
[13,14]. In addition, it is even able to cancell a strong echo emitted from a close loudspeaker without any

knowledge of its reference signal. Conclusion is finally given in section V.

IT Acoustic Characterization and Model

We consider for our application an array of 12 microphones located around the screen of a computer
workstation (6 linearly placed along the top edge, and 2 x 3 placed on both the left and right edges).
The spacing between each couple of adjacent sensors is 0.07 m. This array is the front-end receiver
of a hands-free telephone installed on a banker market operator desk. The loudspeaker is fixed to the

keyboard. We can now model the signals received from the microphone array at time t as follows:
X(t) =G(t) @ s(t) + N(t) , (1)

where X'(?) denotes the m-dimensional observation vector when m = 12 is the number of microphones,
and where s(t) is the emitted speech signal uttered from the operator. G(t) 2 [g1(1),- -, gm()]T is the

m-dimensional vector of IRs, AV/(¢) is the noise vector, and ® denotes time convolution. All the quantities



considered in (1) are real.

We have already measured the impulse responses at a sampling frequency of 8 kHz for 4 selected
positions of the speaker’s mouth (center, right, left, bottom). In Figure 1-a, the plot of the 6 IR of the
central position over 1024 coeflicients clearly shows early reflections and reverberations. A time delay
compensation unit is likely to synchronize the IRs over the direct path, but reflections and reverberations
are not negligible and would be still present. Besides their undesirable effect on speech quality at the
output, they can cause the cancellation of the desired signal if an adaptive noise reduction algorithm
is used. For instance, Van Compernolle used a cross-correlation based unit similar to [9] with a GSC
structure [13]. He also replaced this unit by adaptive filters in [14] to improve the accuracy of time delay
estimates. Nevertheless, he reported with both schemes predictable signal cancellation phenomena at
a positive SNR (signal to noise ratio) [12]. To overcome this problem, he proposed to block the GSC
adaptation during speech activity. This suboptimal solution restricts signal cancellation to some extent,
but speech quality and noise reduction are still affected. Actually, we will confirm later by simulation

the drawbacks of approximating the IRs by simple time delays as usually made in [2-5,7,9,13,14].

a: Impulse response of 6th channel b: Normalized Energy Decay Curve a: Energy of 6th IR for 4 positions b: Mean energy of IRs for 4 positions
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Figure 1: 6th IR of speaker position at center. Figure 2: Energy characterization of IRs.

Let us now define the energy decay curve (EDC) of the i IR ¢;() (i = 1,--+,m) as follows:
A o0
Eg,(t) =) _gi(r) - (2)
T=t%

The clarity index is then defined by C'(g;) 210 loglo(%), where Ty is the total duration of the direct
path and the early reflections. This index which specifies the quality of an acoustic channel for speech
transmission, is the ratio of the total energy of the associated impulse response to the energy contained

in its late reverberation part. The normalized curve of F,, plotted in Figure 1-b shows a relatively low

clarity index of 9.7 dB at T; ~ 128. It also shows that more than 99% of the energy is located in the



first 256 samples, whereas the first 512 coefficients contain only less than 0.9% more. In this case, the
identification of the IRs can be reasonably made over L = 256 coeflicients.
We hence take the FFT (Fast Fourier Transform) of equation (1) over 2L snapshots each K < L

sampling periods. For f =0,---,2L — 1, we have:
Xpn=Gysint Ny s (3)

where the subscripts f and n denote respectively in (3) the FF'T of the indexed quantity at the frequency
bin f and the (m x 2L)-block number n. We actually assume the time variations of G(¢) to be very slow
and practically constant in comparison to the variations of s(t) and A(t). We hence assume Gy, =~ G
for simplicity.

In Figure 2-a, we plot |ge ¢|* for the 4 selected positions of the speaker. The curves show relatively high
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variations of the IRs from one position to another. On the other hand, the curves of | pon

plotted for the same 4 positions in Figure 2-b show small variations. Their standard deviation is actually

smaller than 10% of the mean value at any frequency component. In this case, we can assume the mean
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to be equal to a constant say ﬁj% for any location of the speaker around the central position.
This constant can be measured as a weighted combination of the curves plotted in Figure 2-b. Intuitively,
some kind of “local energy conservation principle” gives support to this feature which underlines the array

characterization of our IRs.

In this case, we can rewrite equation (3) as follows:
X = apn Us+ N (4)

where the complex vector Uy 2 /W Gy is the signal subspace basis vector with norm /m, and the
2

complex scalar ay , 2 \/ @ 545 is the modulated signal parameter. We can finally write a s, =~ By s5,.

If it is possible to track the signal subspace properly, the idea is to recover the modulated signal parameter

ay, and consequently estimate sy ,,.

IIT The Proposed Algorithm

Let us first assume that an estimation of the signal subspace basis U; at iteration n say [A]fm is available.
We can immediately estimate ay, using a simple DS beamformer where the usual steering vector is to

be replaced by [A]fm. However, a proper identification of the signal subspace is associated with a reliable



identification of the jointly orthogonal noise subspace. It is then possible to further reduce the residual
noise still present in the DS output from available and quite clean noise references. To better estimate
the signal parameter a¢, (f =0,---, L), we use a GSC structure [11] as follows:

TH
A Uf,n Xf7n

T (5)

A
=P Xy,

N
Xin =
A H N
afvn = yfvn - nyn van ?
N ~H
Wint1 = Wen+ 00 Xpn a5
where PJ{V is a (m — 1) X m blocking matrix projecting Xy, on the noise subspace to obtain X}Yn.

AH denotes the conjugate transpose of A, and 7, is the step-size of the GSC possibly including a

normalization factor (i.e. 75, 2 HX”TO”Q) Wy, is a (m — 1)-dimensional vector initially set to 0.
fin
. . S o oms L N .
Actually, we start the algorithm with Us g = [e7/*™13L - .. e72™m30]T where 7; (i = 1,---,m) are time

delay estimates of the direct path.

Second, we use the observation vectors Xy, and the modulated signal parameters é;, in the same
way as in [10] to correct [A]fm and track the basis vectors Uy. In fact, we observed that the tracking
procedure is less stable with the GSC output &y, when applied to nonstationary signals. Instead, we

used the DS-like (Delay-Sum) output ys,, in (5) as follows:

Upner = Upn + (X g0 = Usnign) vt (6)

where pi¢,, is the step-size of the LMS-like tracking equation (6) possibly including a normalization factor,
and where ﬁfﬂﬂ_l denotes an unconstrained estimate of [A]fm_H. In this case, we obtain the simplified
neuron model as a principal component analyzer proposed by Oja [15]. In a generalization of (6) to
the case of a multi-dimensional signal subspace made in [16], this unconstrained tracking procedure is
particularly proved to converge to the one dimensional signal subspace with the highest energy and the
basis vector Uy ., such that ||Us.|* = m.

At a reasonable SNR, this equation converges to any solution of the form ﬁfpo = el Uy where ¢y is
a phase shift. Our experience is that ¢; ~ QWTOO% is close to a linear phase where 7., is a short time
delay. In addition, the human auditory system is not very sensitive to phase distortion [2]. Hence, the
effect of ¢y on speech quality is not significant.

When the SNR is very low particularly during the periods of silence, equation (6) is likely to track

noisy sources. It would be better then to stop the adaptation of the algorithm so as to keep the estimates



of Uy from being attracted in the noise subspace. To do so, we first define the steered input signals by

Yin 2 diag[ﬁfn]Xﬂn where diag[V] is a diagonal matrix with the elements of vector V' on the main

diagonal. We then introduce a modified version of the voice activity detector presented in [9] as follows:

y Zfe@{ﬁ X Y i Re(YLmek%,n)}’ )
2 fed % X 211 Ylfn i

where speech activity a(n) is given by a smoothed ratio of the sum of the cross-spectrum components at

a(n+1) = (1 =7)a(n) +~

a selected set of frequencies @, over the sum of the auto-spectrum components at the same frequencies.
v is a smoothing factor, Re(.) denotes the real part of a complex, and Yj,f,n is the j** component of
Yf,n- We found it also better to select 10 frequencies around 1.5 kHz and 2.8 kHz rather than defining
¢ ={0,1,--, %} (i.e. the low frequency region going to 2 kHz) as proposed in [9]. To test the presence
of speech or silence, speech activity a(n) is compared to a given threshold a,,;, as follows:

, A { 1if a(n) > amin,

0 otherwise (silence).

(8)

We finally replace the step-size of the tracking equation in (6) by fis, 2 0n pyn. Notice that ¢,
simultaneously rules the adaptation of (6) at any frequency f, though it can be splitted into frequency
regions with sets other than ®.

We now form the matrix (N;n_H = [ﬁ0ﬁ07n+17 . '7ﬁLﬁL,n—|—17 . -,ﬁgL_lﬁgL_LnH] whose lines approxi-
mate the FFT of the IRs. We hence have to constraint the corresponding fast convolution to be linear
[17]. This is likely to limitate any deviation of the tracking procedure from the true IRs, even at rea-
sonably low SNRs. We hence compute the matrix g~n_|_1 as the line by line IFFT of (NJH_H, then set its
m X L right half part to 0 to have Gn+1. We again take the line by line FF'T of Gn+1 to estimate Gn—l—l
or equivalently have [A]fm_H for f =0,1,---, L. More details can be found in [17-19] about constrained
adaptive filtering in the frequency domain and fast linear convolution.

We finally estimate the speech signal at the block n 4+ 1 by:

[G(K(n+1)),---,8(K(n+1)+2L — 1) 2 Re {IFFT ([0‘50” . O‘;ZLL‘_ll”]) } : (9)

With blocks shifted each K < L samples, input data is oversampled at a rate higher than required to
update (6) more frequently. This is shown to improve the tracking performance of the algorithm [18,19].

As blocks overalp over 2L — K samples, we only keep the following segment of length K:
S(K(n+1)4+L),---,8(K(n+ 1)+ L+ K-1)].

An averaging over K output blocks can be alternatively made for subsampling [17-19].



IV  Simulation Results

In this section, we propose to assess the performance of the studied algorithm for speech acquisition and
noise reduction. We also want to compare it to prior methods based on simple time delay compensation.
For this reason, we start the proposed scheme with time delay identified IRs as stated in section III. For
objective evaluation, we first select an original signal of 2 speech sentences uttered from a female speaker
and recorded in an anechoic room. We also convolve the original waveform plotted in figure 3-a with the
recorded IRs from the nominal central position of the speaker to the array of microphones. The convolved
signals are finally corrupted at a mean SNR of 7 dB by a background noise containing cocktail party
speech, the noise of keyboards and the workstation fans. In figure 3-b, we plot one of the synthesized

signals simulating the noisy speech received at the 6! microphone.
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Figure 3: Speech signal at different stages. Figure 4: Gain of total IR in dB.

For comparison, we skip the tracking step illustrated by equation (6). This corresponds to a simple time
delay compensation usually admitted by [2-5,7,9,13,14]. In this case, we clearly observe in Figure 3-c the
cancellation of the speech signal as reported in [13,14]. On the other hand, the proposed algorithm avoids
this phenomena as shown in figure 3-d, and proves the efficiency of the subspace tracking procedure of
equation (6). In figure 4, we plot the gain in energy of the total response to the central position of the
speaker. The initial curve corresponds to time delay compensation, and shows the approximation usually
made in [2-5,7,9,13,14] to be inadequate beyond a small region in the low frequency. The final curve
corresponds to the identified IRs after convergence of (6), and shows the leak from the signal to the noise
subspace to be reduced to a quite negligible range. Despite the small distortions in phase and modulus,
the quality of output speech is very natural, and point jammers are significantly reduced. However, the

gain in SNR of approximately 7 dB is less than the optimal 10.8 dB reduction of spatial diffuse noise (i.e.



10 log,o(m) = 10.8). To improve the performance in SNR gain, we propose a post-processing stage of
the residual noise as made in [2-5,7], using however a spectral subtraction method developed by Ephraim
and Malah [20]. The additional gain is of 5 dB at an output SNR of 19 dB.

For subjective evaluation, we now test the algorithm with data recorded in real conditions. Since
objective results are very satisfying, we only keep the 6 microphones located at the screen top edge
of the workstation in the microphone array for the rest of our experiments. Four tests are run with
sentences uttered from both male and female speakers at average SNRs ranging from 0 to 8 dB. The
quality of both the output speech and residual noise still sounds good and natural. It shows a significant
improvement when compared to the results of [8]. The total gain in SNR is ranging from 9 to 12 dB
after post-processing. Other tests proved the algorithm to be even able to cancell a strong echo emitted
from a close loudspeaker without any knowledge of its reference signal, and without any damage of the

output speech.

V Conclusion

We proposed in this paper an algorithm based on a signal subspace tracking procedure we adapted from
previous works, to partially identify IRs in the frequency domain. In an acoustic characterization of the
environment, we noticed the total energy of IRs from any location of the speaker close to a nominal
central position to be quite constant at any frequency component. From this key observation, we proved
a full identification of IRs to be possible and more advantageous than simple time delay compensation
in terms of speech acquisition and noise reduction. Consequently, adaptive structures for noise redcution
such as the GSC can be efficiently used without considerable risks of speech cancellation.

At present, we are trying to explicitly incorporate echo cancellation in the proposed scheme using
techniques developed in [18,19]. In parallel, we are adapting the algorithm to an application of hands-
free telephony in a mini-teleconference mode where not only one but many speakers are free to move
around in an office. Although some issues are still under investigation, the first experimental results we

obtained are very encouraging.
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